BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 18825664)

  • 41. Effects of VPAC2 receptor activation on membrane excitability and GABAergic transmission in subparaventricular zone neurons targeted by suprachiasmatic nucleus.
    Hermes ML; Kolaj M; Doroshenko P; Coderre E; Renaud LP
    J Neurophysiol; 2009 Sep; 102(3):1834-42. PubMed ID: 19571188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neuropeptide Y attenuates NMDA-induced phase shifts in the SCN of NPY Y1 receptor knockout mice in vitro.
    Soscia SJ; Harrington ME
    Brain Res; 2004 Oct; 1023(1):148-53. PubMed ID: 15364030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Angiotensin II regulates the activity of mouse suprachiasmatic nuclei neurons.
    Brown TM; McLachlan E; Piggins HD
    Neuroscience; 2008 Jun; 154(2):839-47. PubMed ID: 18479832
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Age-related changes in large-conductance calcium-activated potassium channels in mammalian circadian clock neurons.
    Farajnia S; Meijer JH; Michel S
    Neurobiol Aging; 2015 Jun; 36(6):2176-83. PubMed ID: 25735218
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock.
    Lee B; Almad A; Butcher GQ; Obrietan K
    Eur J Neurosci; 2007 Jul; 26(2):451-62. PubMed ID: 17650117
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Light response of the neuronal firing activity in the suprachiasmatic nucleus of mice.
    Nakamura TJ; Fujimura K; Ebihara S; Shinohara K
    Neurosci Lett; 2004 Nov; 371(2-3):244-8. PubMed ID: 15519766
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ryanodine receptor Ca2+-release channels are an output pathway for the circadian clock in the rat suprachiasmatic nuclei.
    Aguilar-Roblero R; Mercado C; Alamilla J; Laville A; Díaz-Muñoz M
    Eur J Neurosci; 2007 Aug; 26(3):575-82. PubMed ID: 17686038
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 5-HT1B receptor knockout mice exhibit an enhanced response to constant light.
    Sollars PJ; Ogilvie MD; Rea MA; Pickard GE
    J Biol Rhythms; 2002 Oct; 17(5):428-37. PubMed ID: 12375619
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seasonal encoding by the circadian pacemaker of the SCN.
    VanderLeest HT; Houben T; Michel S; Deboer T; Albus H; Vansteensel MJ; Block GD; Meijer JH
    Curr Biol; 2007 Mar; 17(5):468-73. PubMed ID: 17320387
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hyperexcitability phenotype in mouse trigeminal sensory neurons expressing the R192Q Cacna1a missense mutation of familial hemiplegic migraine type-1.
    Hullugundi SK; Ansuini A; Ferrari MD; van den Maagdenberg AM; Nistri A
    Neuroscience; 2014 Apr; 266():244-54. PubMed ID: 24583041
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pathological cholesterol metabolism fails to modify electrophysiological properties of afflicted neurones in Niemann-Pick disease type C.
    Deisz RA; Meske V; Treiber-Held S; Albert F; Ohm TG
    Neuroscience; 2005; 130(4):867-73. PubMed ID: 15652985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circadian phase resetting in response to light-dark and dark-light transitions.
    Comas M; Beersma DG; Hut RA; Daan S
    J Biol Rhythms; 2008 Oct; 23(5):425-34. PubMed ID: 18838608
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice.
    Okano S; Akashi M; Hayasaka K; Nakajima O
    Neurosci Lett; 2009 Feb; 451(3):246-51. PubMed ID: 19159659
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Excessive testosterone treatment and castration induce reactive astrocytes and fos immunoreactivity in suprachiasmatic nucleus of mice.
    Satriotomo I; Miki T; Gonzalez D; Matsumoto Y; Li HP; Gu H; Takeuchi Y
    Brain Res; 2004 Sep; 1020(1-2):130-9. PubMed ID: 15312794
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulation of day-length encoding in the SCN: from single-cell to tissue-level organization.
    Rohling J; Wolters L; Meijer JH
    J Biol Rhythms; 2006 Aug; 21(4):301-13. PubMed ID: 16864650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Calbindin D28K protein cells in a primate suprachiasmatic nucleus: localization, daily rhythm and age-related changes.
    Cayetanot F; Deprez J; Aujard F
    Eur J Neurosci; 2007 Oct; 26(7):2025-32. PubMed ID: 17897402
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CaV2.1 voltage activated calcium channels and synaptic transmission in familial hemiplegic migraine pathogenesis.
    Uchitel OD; Inchauspe CG; Urbano FJ; Di Guilmi MN
    J Physiol Paris; 2012 Jan; 106(1-2):12-22. PubMed ID: 22074995
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antiepileptic drugs on calcium currents recorded from cortical and PAG neurons: therapeutic implications for migraine.
    Martella G; Costa C; Pisani A; Cupini LM; Bernardi G; Calabresi P
    Cephalalgia; 2008 Dec; 28(12):1315-26. PubMed ID: 18771493
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RNA expression profiling in brains of familial hemiplegic migraine type 1 knock-in mice.
    de Vries B; Eising E; Broos LA; Koelewijn SC; Todorov B; Frants RR; Boer JM; Ferrari MD; Hoen PA; van den Maagdenberg AM
    Cephalalgia; 2014 Mar; 34(3):174-82. PubMed ID: 23985897
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.