These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 18826189)
1. A theoretical study on the detection of proton transfer pathways in some mutants of human carbonic anhydrase II. Roy A; Taraphder S J Phys Chem B; 2008 Oct; 112(43):13597-607. PubMed ID: 18826189 [TBL] [Abstract][Full Text] [Related]
2. Identification of proton-transfer pathways in human carbonic anhydrase II. Roy A; Taraphder S J Phys Chem B; 2007 Sep; 111(35):10563-76. PubMed ID: 17691838 [TBL] [Abstract][Full Text] [Related]
3. Proton transfer pathways in the mutant His-64-Ala of human carbonic anhydrase II. Roy A; Taraphder S Biopolymers; 2006 Aug; 82(6):623-30. PubMed ID: 16557501 [TBL] [Abstract][Full Text] [Related]
4. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Fisher Z; Hernandez Prada JA; Tu C; Duda D; Yoshioka C; An H; Govindasamy L; Silverman DN; McKenna R Biochemistry; 2005 Feb; 44(4):1097-105. PubMed ID: 15667203 [TBL] [Abstract][Full Text] [Related]
5. Speeding up proton transfer in a fast enzyme: kinetic and crystallographic studies on the effect of hydrophobic amino acid substitutions in the active site of human carbonic anhydrase II. Fisher SZ; Tu C; Bhatt D; Govindasamy L; Agbandje-McKenna M; McKenna R; Silverman DN Biochemistry; 2007 Mar; 46(12):3803-13. PubMed ID: 17330962 [TBL] [Abstract][Full Text] [Related]
6. Proton transfer in a Thr200His mutant of human carbonic anhydrase II. Bhatt D; Tu C; Fisher SZ; Hernandez Prada JA; McKenna R; Silverman DN Proteins; 2005 Nov; 61(2):239-45. PubMed ID: 16106378 [TBL] [Abstract][Full Text] [Related]
7. Transition path sampling study of the conformational fluctuation of His-64 in human carbonic anhydrase II. Roy A; Taraphder S J Phys Chem B; 2009 Sep; 113(37):12555-64. PubMed ID: 19685901 [TBL] [Abstract][Full Text] [Related]
8. Mapping proton wires in proteins: carbonic anhydrase and GFP chromophore biosynthesis. Shinobu A; Agmon N J Phys Chem A; 2009 Jul; 113(26):7253-66. PubMed ID: 19388648 [TBL] [Abstract][Full Text] [Related]
9. Structural and kinetic analysis of proton shuttle residues in the active site of human carbonic anhydrase III. Elder I; Fisher Z; Laipis PJ; Tu C; McKenna R; Silverman DN Proteins; 2007 Jul; 68(1):337-43. PubMed ID: 17427958 [TBL] [Abstract][Full Text] [Related]
10. Proton transfer in carbonic anhydrase is controlled by electrostatics rather than the orientation of the acceptor. Riccardi D; König P; Guo H; Cui Q Biochemistry; 2008 Feb; 47(8):2369-78. PubMed ID: 18247480 [TBL] [Abstract][Full Text] [Related]
11. Kinetic isotope effects for concerted multiple proton transfer: a direct dynamics study of an active-site model of carbonic anhydrase II. Smedarchina Z; Siebrand W; Fernández-Ramos A; Cui Q J Am Chem Soc; 2003 Jan; 125(1):243-51. PubMed ID: 12515527 [TBL] [Abstract][Full Text] [Related]
12. Carbonic anhydrase activators: X-ray crystal structure of the adduct of human isozyme II with L-histidine as a platform for the design of stronger activators. Temperini C; Scozzafava A; Puccetti L; Supuran CT Bioorg Med Chem Lett; 2005 Dec; 15(23):5136-41. PubMed ID: 16214338 [TBL] [Abstract][Full Text] [Related]
13. Atomic crystal and molecular dynamics simulation structures of human carbonic anhydrase II: insights into the proton transfer mechanism. Fisher SZ; Maupin CM; Budayova-Spano M; Govindasamy L; Tu C; Agbandje-McKenna M; Silverman DN; Voth GA; McKenna R Biochemistry; 2007 Mar; 46(11):2930-7. PubMed ID: 17319692 [TBL] [Abstract][Full Text] [Related]
14. Carbonic anhydrase activators. Activation of isozymes I, II, IV, VA, VII, and XIV with l- and d-histidine and crystallographic analysis of their adducts with isoform II: engineering proton-transfer processes within the active site of an enzyme. Temperini C; Scozzafava A; Vullo D; Supuran CT Chemistry; 2006 Sep; 12(27):7057-66. PubMed ID: 16807956 [TBL] [Abstract][Full Text] [Related]
15. Metal-histidine-glutamate as a regulator of enzymatic cycles: a case study of carbonic anhydrase. Frison G; Ohanessian G Phys Chem Chem Phys; 2009 Jan; 11(2):374-83. PubMed ID: 19088994 [TBL] [Abstract][Full Text] [Related]
16. Role of protein motions on proton transfer pathways in human carbonic anhydrase II. Roy A; Taraphder S Biochim Biophys Acta; 2010 Feb; 1804(2):352-61. PubMed ID: 19781668 [TBL] [Abstract][Full Text] [Related]
17. Structure of bovine carbonic anhydrase II at 1.95 A resolution. Saito R; Sato T; Ikai A; Tanaka N Acta Crystallogr D Biol Crystallogr; 2004 Apr; 60(Pt 4):792-5. PubMed ID: 15039588 [TBL] [Abstract][Full Text] [Related]
18. Reshaping the folding energy landscape of human carbonic anhydrase II by a single point genetic mutation Pro237His. Jiang Y; Su JT; Zhang J; Wei X; Yan YB; Zhou HM Int J Biochem Cell Biol; 2008; 40(4):776-88. PubMed ID: 18060825 [TBL] [Abstract][Full Text] [Related]
19. Kinetic analysis of multiple proton shuttles in the active site of human carbonic anhydrase. Tu C; Qian M; An H; Wadhwa NR; Duda D; Yoshioka C; Pathak Y; McKenna R; Laipis PJ; Silverman DN J Biol Chem; 2002 Oct; 277(41):38870-6. PubMed ID: 12171926 [TBL] [Abstract][Full Text] [Related]
20. Proton transfer from exogenous donors in catalysis by human carbonic anhydrase II. Elder I; Tu C; Ming LJ; McKenna R; Silverman DN Arch Biochem Biophys; 2005 May; 437(1):106-14. PubMed ID: 15820222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]