BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18826244)

  • 1. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon membranes. Simultaneous determination of benzo[a]pyrene and dibenz[a,h]anthracene at parts-per-trillion levels in the presence of the remaining EPA PAH priority pollutants as interferences.
    Bortolato SA; Arancibia JA; Escandar GM
    Anal Chem; 2008 Nov; 80(21):8276-86. PubMed ID: 18826244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature excitation-emission phosphorescence matrices and second-order multivariate calibration for the simultaneous determination of pyrene and benzo[a]pyrene.
    Arancibia JA; Escandar GM
    Anal Chim Acta; 2007 Feb; 584(2):287-94. PubMed ID: 17386617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemometrics-assisted excitation-emission fluorescence spectroscopy on nylon-attached rotating disks. Simultaneous determination of polycyclic aromatic hydrocarbons in the presence of interferences.
    Cañas A; Richter P; Escandar GM
    Anal Chim Acta; 2014 Dec; 852():105-11. PubMed ID: 25441886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Second-order advantage with excitation-emission fluorescence spectroscopy and a flow-through optosensing device. Simultaneous determination of thiabendazole and fuberidazole in the presence of uncalibrated interferences.
    Piccirilli GN; Escandar GM
    Analyst; 2010 Jun; 135(6):1299-308. PubMed ID: 20396835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel application of nylon membranes to the luminescent determination of benzo[a]pyrene at ultra trace levels in water samples.
    Bortolato SA; Arancibia JA; Escandar GM
    Anal Chim Acta; 2008 Apr; 613(2):218-27. PubMed ID: 18395061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of heavy polycyclic aromatic hydrocarbons of concern in edible oils via excitation-emission fluorescence spectroscopy on nylon membranes coupled to unfolded partial least-squares/residual bilinearization.
    Vásquez V; Báez ME; Bravo M; Fuentes E
    Anal Bioanal Chem; 2013 Sep; 405(23):7497-507. PubMed ID: 23861183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of the determination of polycyclic aromatic hydrocarbons in edible oils via unfolded partial least-squares/residual bilinearization and parallel factor analysis of fluorescence excitation emission matrices.
    Alarcón F; Báez ME; Bravo M; Richter P; Escandar GM; Olivieri AC; Fuentes E
    Talanta; 2013 Jan; 103():361-70. PubMed ID: 23200400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometrics-assisted fluorimetry for the rapid and selective determination of heavy polycyclic aromatic hydrocarbons in contaminated river waters and activated sludges.
    Bortolato SA; Arancibia JA; Escandar GM
    Environ Sci Technol; 2011 Feb; 45(4):1513-20. PubMed ID: 21194197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrofluorimetry in organized media coupled to second-order multivariate calibration for the determination of galantamine in the presence of uncalibrated interferences.
    Culzoni MJ; Aucelio RQ; Escandar GM
    Talanta; 2010 Jun; 82(1):325-32. PubMed ID: 20685474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemometric-assisted MIP-optosensing system for the simultaneous determination of monoamine naphthalenes in drinking waters.
    Valero-Navarro A; Damiani PC; Fernández-Sánchez JF; Segura-Carretero A; Fernández-Gutiérrez A
    Talanta; 2009 Apr; 78(1):57-65. PubMed ID: 19174203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Second-order advantage achieved by unfolded-partial least-squares/residual bilinearization modeling of excitation-emission fluorescence data presenting inner filter effects.
    Gil DB; de la Peña AM; Arancibia JA; Escandar GM; Olivieri AC
    Anal Chem; 2006 Dec; 78(23):8051-8. PubMed ID: 17134139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous analysis of the photocatalytic degradation of polycyclic aromatic hydrocarbons using three-dimensional excitation-emission matrix fluorescence and parallel factor analysis.
    Bosco MV; Callao MP; Larrechi MS
    Anal Chim Acta; 2006 Aug; 576(2):184-91. PubMed ID: 17723631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation-emission matrix fluorescence spectroscopy in conjunction with multiway analysis for PAH detection in complex matrices.
    Nahorniak ML; Booksh KS
    Analyst; 2006 Dec; 131(12):1308-15. PubMed ID: 17124538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid screening of polycyclic aromatic hydrocarbons (PAHs) in waters by directly suspended droplet microextraction-microvolume fluorospectrometry.
    Pena-Pereira F; Costas-Mora I; Lavilla I; Bendicho C
    Talanta; 2012 Jan; 89():217-22. PubMed ID: 22284483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-way modeling of 4.2 K time-resolved excitation emission fluorescence data for the quantitation of polycyclic aromatic hydrocarbons in soil samples.
    Goicoechea HC; Yu S; Moore AF; Campiglia AD
    Talanta; 2012 Nov; 101():330-6. PubMed ID: 23158330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of gel permeation chromatography and HPLC method with fluorescence detector to determination of benzo(a)pyrene in food samples.
    Germuska R; Michalski R
    Cent Eur J Public Health; 2000 Jul; 8 Suppl():92-3. PubMed ID: 10943489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error propagation as a factor in selection of measurement intervals for the determination of polycyclic aromatic hydrocarbons by second-derivative spectrofluorimetry.
    Eiroa AA; Blanco EV; Mahía PL; Lorenzo SM; Rodríguez DP; Fernández EF
    J AOAC Int; 2000; 83(4):977-83. PubMed ID: 10995125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of atenolol in human urine by emission-excitation fluorescence matrices and unfolded partial least-squares with residual bilinearization.
    Damiani PC
    Talanta; 2011 Sep; 85(3):1526-34. PubMed ID: 21807218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Benzo(a)pyrene, benzo(a)anthracene, and dibenzo(a,h)anthracene emissions from coal and waste tire energy generation at atmospheric fluidized bed combustion (AFBC).
    Mastral AM; Callén MS; García T; Lopez JM
    Environ Sci Technol; 2001 Jul; 35(13):2645-9. PubMed ID: 11452587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comamonas sp. 3ah48 is a dibenz[a,h]anthracene-degrading bacterium that is tolerant to heavy metals.
    Okai M; Ohki Y; Yamamoto S; Takashio M; Ishida M; Urano N
    Lett Appl Microbiol; 2019 Jun; 68(6):589-596. PubMed ID: 30942912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.