These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18826287)

  • 21. A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators.
    Aravindan V; Sundaramurthy J; Kumar PS; Shubha N; Ling WC; Ramakrishna S; Madhavi S
    Nanoscale; 2013 Nov; 5(21):10636-45. PubMed ID: 24057339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-Level Changes during Electrochemical Cycling of Oriented LiMn
    Ikuhara YH; Gao X; Kawahara K; Fisher CAJ; Kuwabara A; Ishikawa R; Moriwake H; Ikuhara Y
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6507-6517. PubMed ID: 35084828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SnO(2) nanorod-planted graphite: an effective nanostructure configuration for reversible lithium ion storage.
    Kim JG; Nam SH; Lee SH; Choi SM; Kim WB
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):828-35. PubMed ID: 21344871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural and morphological evolution of beta-MnO2 nanorods during hydrothermal synthesis.
    Gao T; Fjellvåg H; Norby P
    Nanotechnology; 2009 Feb; 20(5):055610. PubMed ID: 19417357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile One-Step Dynamic Hydrothermal Synthesis of Spinel LiMn
    Shen C; Xu H; Liu L; Hu H; Chen S; Su L; Wang L
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and electrochemical performances of co-substituted LiCo(x)Li(x-y)Mn(2-x)O4 cathode materials for the rechargeable lithium ion batteries.
    Mohan P; Kalaignan GP
    J Nanosci Nanotechnol; 2013 Oct; 13(10):6694-700. PubMed ID: 24245131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxygen vacancies lead to loss of domain order, particle fracture, and rapid capacity fade in lithium manganospinel (LiMn₂O₄) batteries.
    Hao X; Lin X; Lu W; Bartlett BM
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10849-57. PubMed ID: 24846300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unusual Spinel-to-Layered Transformation in LiMn
    Ben L; Yu H; Chen B; Chen Y; Gong Y; Yang X; Gu L; Huang X
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35463-35475. PubMed ID: 28933817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of local and electronic structural changes with partially anion substitution lithium manganese spinel oxides on their electrochemical properties: X-ray absorption spectroscopy study.
    Okumura T; Fukutsuka T; Matsumoto K; Orikasa Y; Arai H; Ogumi Z; Uchimoto Y
    Dalton Trans; 2011 Oct; 40(38):9752-64. PubMed ID: 21869978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An interwoven network of MnO₂ nanowires and carbon nanotubes as the anode for bendable lithium-ion batteries.
    Ee SJ; Pang H; Mani U; Yan Q; Ting SL; Chen P
    Chemphyschem; 2014 Aug; 15(12):2445-9. PubMed ID: 24888436
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Water oxidation by lambda-MnO2: catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4.
    Robinson DM; Go YB; Greenblatt M; Dismukes GC
    J Am Chem Soc; 2010 Aug; 132(33):11467-9. PubMed ID: 20672802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical properties of Sn-substituted LiMn2O4 thin films prepared by radio-frequency magnetron sputtering.
    Kong WY; Yim H; Yoon SJ; Nahm S; Choi JW
    J Nanosci Nanotechnol; 2013 May; 13(5):3288-92. PubMed ID: 23858845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoscaled LiMn
    Siller V; Gonzalez-Rosillo JC; Eroles MN; Baiutti F; Liedke MO; Butterling M; Attallah AG; Hirschmann E; Wagner A; Morata A; Tarancón A
    ACS Appl Mater Interfaces; 2022 Jul; 14(29):33438-46. PubMed ID: 35830969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hydrothermal synthesis and electrochemical properties of Li₃V₂(PO₄)₃/C-based composites for lithium-ion batteries.
    Sun C; Rajasekhara S; Dong Y; Goodenough JB
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3772-6. PubMed ID: 21877744
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LiNi₁/₃Co₁/₃Mn₁/₃O₂-graphene composite as a promising cathode for lithium-ion batteries.
    Venkateswara Rao C; Leela Mohana Reddy A; Ishikawa Y; Ajayan PM
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):2966-72. PubMed ID: 21714504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced cycleability of LiMn2O4 cathodes by atomic layer deposition of nanosized-thin Al2O3 coatings.
    Guan D; Jeevarajan JA; Wang Y
    Nanoscale; 2011 Apr; 3(4):1465-9. PubMed ID: 21327283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological and crystalline evolution of nanostructured MnO2 and its application in lithium--air batteries.
    Truong TT; Liu Y; Ren Y; Trahey L; Sun Y
    ACS Nano; 2012 Sep; 6(9):8067-77. PubMed ID: 22866870
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunnel manganese oxides prepared using recovered LiMn
    Zhang Y; Li X; Chen X; Koivula R; Xu J
    J Hazard Mater; 2022 Mar; 425():127957. PubMed ID: 34915292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries.
    Sun YK; Lee MJ; Yoon CS; Hassoun J; Amine K; Scrosati B
    Adv Mater; 2012 Mar; 24(9):1192-6. PubMed ID: 22362564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy.
    Lee S; Oshima Y; Hosono E; Zhou H; Kim K; Chang HM; Kanno R; Takayanagi K
    ACS Nano; 2015 Jan; 9(1):626-32. PubMed ID: 25513896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.