BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18826317)

  • 1. Trigger mechanism for the catalytic hydrogen activation by monoiron (iron-sulfur cluster-free) hydrogenase.
    Yang X; Hall MB
    J Am Chem Soc; 2008 Oct; 130(43):14036-7. PubMed ID: 18826317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H2-forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy.
    Lyon EJ; Shima S; Boecher R; Thauer RK; Grevels FW; Bill E; Roseboom W; Albracht SP
    J Am Chem Soc; 2004 Nov; 126(43):14239-48. PubMed ID: 15506791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mössbauer studies of the iron-sulfur cluster-free hydrogenase: the electronic state of the mononuclear Fe active site.
    Shima S; Lyon EJ; Thauer RK; Mienert B; Bill E
    J Am Chem Soc; 2005 Jul; 127(29):10430-5. PubMed ID: 16028957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model.
    Surawatanawong P; Hall MB
    Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory.
    Lee JW; Jo WH
    Dalton Trans; 2009 Oct; (40):8532-7. PubMed ID: 19809728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A third type of hydrogenase catalyzing H2 activation.
    Shima S; Thauer RK
    Chem Rec; 2007; 7(1):37-46. PubMed ID: 17304591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the mechanism of electrocatalytic hydrogen evolution mediated by Fe2(S2C3H6)(CO)6: the simplest functional model of the Fe-hydrogenase active site.
    Greco C; Zampella G; Bertini L; Bruschi M; Fantucci P; De Gioia L
    Inorg Chem; 2007 Jan; 46(1):108-16. PubMed ID: 17198418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations.
    Löscher S; Schwartz L; Stein M; Ott S; Haumann M
    Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT characterization of the reaction pathways for terminal- to μ-hydride isomerisation in synthetic models of the [FeFe]-hydrogenase active site.
    Zampella G; Fantucci P; De Gioia L
    Chem Commun (Camb); 2010 Dec; 46(46):8824-6. PubMed ID: 20953495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refining the active site structure of iron-iron hydrogenase using computational infrared spectroscopy.
    Tye JW; Darensbourg MY; Hall MB
    Inorg Chem; 2008 Apr; 47(7):2380-8. PubMed ID: 18307282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase.
    Ceh K; Demmer U; Warkentin E; Moll J; Thauer RK; Shima S; Ermler U
    Biochemistry; 2009 Oct; 48(42):10098-105. PubMed ID: 19761261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential.
    Yu Z; Wang M; Li P; Dong W; Wang F; Sun L
    Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of the H-cluster framework of iron-only hydrogenase.
    Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ
    Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iron carbonyl pyridonate complex related to the active site of the [Fe]-hydrogenase (Hmd).
    Obrist BV; Chen D; Ahrens A; Schünemann V; Scopelliti R; Hu X
    Inorg Chem; 2009 Apr; 48(8):3514-6. PubMed ID: 19320470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational definition of a mixed valent Fe(II)Fe(I) model of the [FeFe]hydrogenase active site resting state.
    Thomas CM; Darensbourg MY; Hall MB
    J Inorg Biochem; 2007 Nov; 101(11-12):1752-7. PubMed ID: 17698202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The crystal structure of [Fe]-hydrogenase reveals the geometry of the active site.
    Shima S; Pilak O; Vogt S; Schick M; Stagni MS; Meyer-Klaucke W; Warkentin E; Thauer RK; Ermler U
    Science; 2008 Jul; 321(5888):572-5. PubMed ID: 18653896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study on mechanistic details of the aminoethanol rearrangement catalyzed by the vitamin B12-dependent ethanolamine ammonia lyase: His and Asp/Glu acting simultaneously as catalytic auxiliaries.
    Semialjac M; Schwarz H
    J Org Chem; 2003 Sep; 68(18):6967-83. PubMed ID: 12946137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.
    Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A
    J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.