BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18826325)

  • 1. The Curtius rearrangement of cyclopropyl and cyclopropenoyl azides. A combined theoretical and experimental mechanistic study.
    Tarwade V; Dmitrenko O; Bach RD; Fox JM
    J Org Chem; 2008 Nov; 73(21):8189-97. PubMed ID: 18826325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive theoretical analysis of Curtius rearrangement of syn-syn and syn-anti conformers of oxalyl diazide.
    Taherian R; Chahkandi B; Zahedi E
    J Mol Graph Model; 2021 Dec; 109():108012. PubMed ID: 34478927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational study of the Curtius-like rearrangements of phosphoryl, phosphinyl, and phosphinoyl azides and their corresponding nitrenes.
    McCulla RD; Gohar GA; Hadad CM; Platz MS
    J Org Chem; 2007 Dec; 72(25):9426-38. PubMed ID: 17999517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Dynamics Simulations of Curtius Reaction of Acetyl- and Fluorocarbonyl Azides.
    Godara S; Radhakrishnan A; Paranjothy M
    J Phys Chem A; 2020 Aug; 124(32):6438-6444. PubMed ID: 32668155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Curtius-Type Rearrangement of Sulfinyl Azides: A Matrix Isolation and Computational Study.
    Wu Z; Zeng X
    J Phys Chem A; 2022 Jul; 126(27):4367-4375. PubMed ID: 35771242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of acetyl- and methoxycarbonylnitrenes by computational methods and a laser flash photolysis study of benzoylnitrene.
    Liu J; Mandel S; Hadad CM; Platz MS
    J Org Chem; 2004 Dec; 69(25):8583-93. PubMed ID: 15575733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies of nucleophilic substitution at carbonyl carbon: the S(N)2 mechanism versus the tetrahedral intermediate in organic synthesis.
    Fox JM; Dmitrenko O; Liao LA; Bach RD
    J Org Chem; 2004 Oct; 69(21):7317-28. PubMed ID: 15471486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition states for the dimerization of 1,3-cyclohexadiene: a DFT, CASPT2, and CBS-QB3 quantum mechanical investigation.
    Ess DH; Hayden AE; Klärner FG; Houk KN
    J Org Chem; 2008 Oct; 73(19):7586-92. PubMed ID: 18763823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting Photolytic and Thermal Decomposition of Phenyl Azidoformate: The Curtius Rearrangement Versus Intramolecular C-H Amination.
    Wan H; Xu J; Liu Q; Li H; Lu Y; Abe M; Zeng X
    J Phys Chem A; 2017 Nov; 121(45):8604-8613. PubMed ID: 29069546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational composition, molecular structure and decomposition of difluorophosphoryl azide in the gas phase.
    Wu Z; Li H; Zhu B; Zeng X; Hayes SA; Mitzel NW; Beckers H; Berger RJ
    Phys Chem Chem Phys; 2015 Apr; 17(14):8784-91. PubMed ID: 25740559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, Characterization and Energetic Performance of Oxalyl Diazide, Carbamoyl Azide, and N,N'-Bis(azidocarbonyl)hydrazine.
    Harter AG; Klapötke TM; Stierstorfer J; Voggenreiter M; Zeng X
    Chempluschem; 2021 May; 86(6):870-874. PubMed ID: 34114377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2
    Funt LD; Krivolapova YV; Khoroshilova OV; Novikov MS; Khlebnikov AF
    J Org Chem; 2020 Mar; 85(6):4182-4194. PubMed ID: 32098472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular flow reactor for performing Curtius rearrangements as a continuous flow process.
    Baumann M; Baxendale IR; Ley SV; Nikbin N; Smith CD; Tierney JP
    Org Biomol Chem; 2008 May; 6(9):1577-86. PubMed ID: 18421389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on the stability of cycloprop-2-ene carboxylate dianions and reactions with electrophiles.
    Fisher LA; Fox JM
    J Org Chem; 2008 Nov; 73(21):8474-8. PubMed ID: 18850746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally persistent carbonyl nitrene: FC(O)N.
    Sun H; Zhu B; Wu Z; Zeng X; Beckers H; Jenks WS
    J Org Chem; 2015 Feb; 80(3):2006-9. PubMed ID: 25584417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early events in the photochemistry of 2-naphthyl azide from femtosecond UV/Vis spectroscopy and quantum chemical calculations: direct observation of a very short-lived singlet nitrene.
    Wang J; Kubicki J; Burdzinski G; Hackett JC; Gustafson TL; Hadad CM; Platz MS
    J Org Chem; 2007 Sep; 72(20):7581-6. PubMed ID: 17824713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular orbital calculations of ring opening of the isoelectronic cyclopropylcarbinyl radical, cyclopropoxy radical, and cyclopropylaminium radical cation series of radical clocks.
    Cooksy AL; King HF; Richardson WH
    J Org Chem; 2003 Nov; 68(24):9441-52. PubMed ID: 14629170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoinduced Curtius rearrangements of fluorocarbonyl azide, FC(O)N
    Xie BB; Cui CX; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jul; 20(29):19363-19372. PubMed ID: 29998234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of nitrosoarene-alkyne cycloaddition.
    Penoni A; Palmisano G; Zhao YL; Houk KN; Volkman J; Nicholas KM
    J Am Chem Soc; 2009 Jan; 131(2):653-61. PubMed ID: 19093864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.