These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18826338)

  • 1. Proteins and their peptide motifs in acellular apatite mineralization of scaffolds for tissue engineering.
    Benesch J; Mano JF; Reis RL
    Tissue Eng Part B Rev; 2008 Dec; 14(4):433-45. PubMed ID: 18826338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Templated mineralization of synthetic hydrogels for bone-like composite materials: role of matrix hydrophobicity.
    Phadke A; Zhang C; Hwang Y; Vecchio K; Varghese S
    Biomacromolecules; 2010 Aug; 11(8):2060-8. PubMed ID: 20690714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.
    Jabbarzadeh E; Nair LS; Khan YM; Deng M; Laurencin CT
    J Biomater Sci Polym Ed; 2007; 18(9):1141-52. PubMed ID: 17931504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization of hydrogels for bone regeneration.
    Gkioni K; Leeuwenburgh SC; Douglas TE; Mikos AG; Jansen JA
    Tissue Eng Part B Rev; 2010 Dec; 16(6):577-85. PubMed ID: 20735319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J; Low S; Choon AT; Kumar AB; Ramakrishna S
    J Biomed Mater Res A; 2008 May; 85(2):408-17. PubMed ID: 17701970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of a biomimetic nanocomposite scaffold for bone tissue engineering via mineralization of gelatin hydrogel and study of mineral transformation in simulated body fluid.
    Azami M; Moosavifar MJ; Baheiraei N; Moztarzadeh F; Ai J
    J Biomed Mater Res A; 2012 May; 100(5):1347-55. PubMed ID: 22374752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering.
    Liao S; Murugan R; Chan CK; Ramakrishna S
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):252-60. PubMed ID: 19627790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scaffolds for dental pulp tissue engineering.
    Galler KM; D'Souza RN; Hartgerink JD; Schmalz G
    Adv Dent Res; 2011 Jul; 23(3):333-9. PubMed ID: 21677088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apatite mineralization behavior on polyglutamic acid hydrogels in aqueous condition: effects of molecular weight.
    Miyazaki T; Mukai J; Ishida E; Ohtsuki C
    Biomed Mater Eng; 2013; 23(5):339-47. PubMed ID: 23988706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergy between genetic and tissue engineering: Runx2 overexpression and in vitro construct development enhance in vivo mineralization.
    Byers BA; Guldberg RE; García AJ
    Tissue Eng; 2004; 10(11-12):1757-66. PubMed ID: 15684684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1: influence of polymer molecular weight.
    Jee SS; Thula TT; Gower LB
    Acta Biomater; 2010 Sep; 6(9):3676-86. PubMed ID: 20359554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators.
    Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV
    Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic self-assembly of apatite hybrid materials: from a single molecular template to bi-/multi-molecular templates.
    Ma J; Wang J; Ai X; Zhang S
    Biotechnol Adv; 2014; 32(4):744-60. PubMed ID: 24211471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications.
    Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colocation and role of polyphosphates and alkaline phosphatase in apatite biomineralization of elasmobranch tesserae.
    Omelon S; Georgiou J; Variola F; Dean MN
    Acta Biomater; 2014 Sep; 10(9):3899-910. PubMed ID: 24948547
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralization of dense collagen hydrogel scaffolds by human pulp cells.
    Coyac BR; Chicatun F; Hoac B; Nelea V; Chaussain C; Nazhat SN; McKee MD
    J Dent Res; 2013 Jul; 92(7):648-54. PubMed ID: 23632809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone mineralization.
    Bonucci E
    Front Biosci (Landmark Ed); 2012 Jan; 17(1):100-28. PubMed ID: 22201735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of elastin-like polypeptide-collagen composite scaffold for bone tissue engineering.
    Amruthwar SS; Janorkar AV
    Dent Mater; 2013 Feb; 29(2):211-20. PubMed ID: 23127995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles.
    Anderson HC; Cecil R; Sajdera SW
    Am J Pathol; 1975 May; 79(2):237-54. PubMed ID: 1146961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.