These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 18826917)
1. Boreal forests, aerosols and the impacts on clouds and climate. Spracklen DV; Bonn B; Carslaw KS Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1885):4613-26. PubMed ID: 18826917 [TBL] [Abstract][Full Text] [Related]
2. Climate change decreases the cooling effect from postfire albedo in boreal North America. Potter S; Solvik K; Erb A; Goetz SJ; Johnstone JF; Mack MC; Randerson JT; Román MO; Schaaf CL; Turetsky MR; Veraverbeke S; Walker XJ; Wang Z; Massey R; Rogers BM Glob Chang Biol; 2020 Mar; 26(3):1592-1607. PubMed ID: 31658411 [TBL] [Abstract][Full Text] [Related]
4. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Helbig M; Wischnewski K; Kljun N; Chasmer LE; Quinton WL; Detto M; Sonnentag O Glob Chang Biol; 2016 Dec; 22(12):4048-4066. PubMed ID: 27153776 [TBL] [Abstract][Full Text] [Related]
5. Even cooler insights: On the power of forests to (water the Earth and) cool the planet. Ellison D; Pokorný J; Wild M Glob Chang Biol; 2024 Feb; 30(2):e17195. PubMed ID: 38389196 [TBL] [Abstract][Full Text] [Related]
6. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.]. Huang C; He HS; Liang Y; Wu ZW Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645 [TBL] [Abstract][Full Text] [Related]
7. Cool as a moose: How can browsing counteract climate warming effects across boreal forest ecosystems? Vuorinen KEM; Kolstad AL; De Vriendt L; Austrheim G; Tremblay JP; Solberg EJ; Speed JDM Ecology; 2020 Nov; 101(11):e03159. PubMed ID: 33448367 [TBL] [Abstract][Full Text] [Related]
8. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Bonan GB Science; 2008 Jun; 320(5882):1444-9. PubMed ID: 18556546 [TBL] [Abstract][Full Text] [Related]
9. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo. Bright RM; Strømman AH; Peters GP Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227 [TBL] [Abstract][Full Text] [Related]
10. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Betts RA Nature; 2000 Nov; 408(6809):187-90. PubMed ID: 11089969 [TBL] [Abstract][Full Text] [Related]
11. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes. Tautenhahn S; Lichstein JW; Jung M; Kattge J; Bohlman SA; Heilmeier H; Prokushkin A; Kahl A; Wirth C Glob Chang Biol; 2016 Jun; 22(6):2178-97. PubMed ID: 26649652 [TBL] [Abstract][Full Text] [Related]
12. The origin of soil organic matter controls its composition and bioreactivity across a mesic boreal forest latitudinal gradient. Kohl L; Philben M; Edwards KA; Podrebarac FA; Warren J; Ziegler SE Glob Chang Biol; 2018 Feb; 24(2):e458-e473. PubMed ID: 28871609 [TBL] [Abstract][Full Text] [Related]
13. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada. Chen HY; Luo Y; Reich PB; Searle EB; Biswas SR Ecol Lett; 2016 Sep; 19(9):1150-8. PubMed ID: 27465040 [TBL] [Abstract][Full Text] [Related]
14. Major losses of nutrients following a severe drought in a boreal forest. Houle D; Lajoie G; Duchesne L Nat Plants; 2016 Nov; 2(12):16187. PubMed ID: 27909293 [TBL] [Abstract][Full Text] [Related]
15. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China]. Luo X; Wang YL; Zhang JQ Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211 [TBL] [Abstract][Full Text] [Related]
16. Persistent and pervasive compositional shifts of western boreal forest plots in Canada. Searle EB; Chen HY Glob Chang Biol; 2017 Feb; 23(2):857-866. PubMed ID: 27465312 [TBL] [Abstract][Full Text] [Related]
17. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests. Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862 [TBL] [Abstract][Full Text] [Related]
18. Local cooling and warming effects of forests based on satellite observations. Li Y; Zhao M; Motesharrei S; Mu Q; Kalnay E; Li S Nat Commun; 2015 Mar; 6():6603. PubMed ID: 25824529 [TBL] [Abstract][Full Text] [Related]
19. Design and performance of combined infrared canopy and belowground warming in the B4WarmED (Boreal Forest Warming at an Ecotone in Danger) experiment. Rich RL; Stefanski A; Montgomery RA; Hobbie SE; Kimball BA; Reich PB Glob Chang Biol; 2015 Jun; 21(6):2334-48. PubMed ID: 25640748 [TBL] [Abstract][Full Text] [Related]
20. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests. Zhang X; Manzanedo RD; D'Orangeville L; Rademacher TT; Li J; Bai X; Hou M; Chen Z; Zou F; Song F; Pederson N Glob Chang Biol; 2019 Oct; 25(10):3462-3471. PubMed ID: 31271698 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]