These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Girardin MP; Hogg EH; Bernier PY; Kurz WA; Guo XJ; Cyr G Glob Chang Biol; 2016 Feb; 22(2):627-43. PubMed ID: 26507106 [TBL] [Abstract][Full Text] [Related]
24. Large impacts of climatic warming on growth of boreal forests since 1960. Kauppi PE; Posch M; Pirinen P PLoS One; 2014; 9(11):e111340. PubMed ID: 25383552 [TBL] [Abstract][Full Text] [Related]
25. Influence of winter precipitation on spring phenology in boreal forests. Yun J; Jeong SJ; Ho CH; Park CE; Park H; Kim J Glob Chang Biol; 2018 Nov; 24(11):5176-5187. PubMed ID: 30067888 [TBL] [Abstract][Full Text] [Related]
30. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect. Croft B; Wentworth GR; Martin RV; Leaitch WR; Murphy JG; Murphy BN; Kodros JK; Abbatt JP; Pierce JR Nat Commun; 2016 Nov; 7():13444. PubMed ID: 27845764 [TBL] [Abstract][Full Text] [Related]
31. The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system. Roldin P; Ehn M; Kurtén T; Olenius T; Rissanen MP; Sarnela N; Elm J; Rantala P; Hao L; Hyttinen N; Heikkinen L; Worsnop DR; Pichelstorfer L; Xavier C; Clusius P; Öström E; Petäjä T; Kulmala M; Vehkamäki H; Virtanen A; Riipinen I; Boy M Nat Commun; 2019 Sep; 10(1):4370. PubMed ID: 31554809 [TBL] [Abstract][Full Text] [Related]
32. How permafrost degradation threatens boreal forest growth on its southern margin? Li Y; Liu H; Zhu X; Yue Y; Xue J; Shi L Sci Total Environ; 2021 Mar; 762():143154. PubMed ID: 33131839 [TBL] [Abstract][Full Text] [Related]
33. Carbon-equivalent metrics for albedo changes in land management contexts: relevance of the time dimension. Bright RM; Bogren W; Bernier P; Astrup R Ecol Appl; 2016 Sep; 26(6):1868-1880. PubMed ID: 27755703 [TBL] [Abstract][Full Text] [Related]
34. Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Dulamsuren C; Hauck M Glob Chang Biol; 2021 Oct; 27(20):5211-5224. PubMed ID: 34309985 [TBL] [Abstract][Full Text] [Related]
35. The impact of boreal forest fire on climate warming. Randerson JT; Liu H; Flanner MG; Chambers SD; Jin Y; Hess PG; Pfister G; Mack MC; Treseder KK; Welp LR; Chapin FS; Harden JW; Goulden ML; Lyons E; Neff JC; Schuur EA; Zender CS Science; 2006 Nov; 314(5802):1130-2. PubMed ID: 17110574 [TBL] [Abstract][Full Text] [Related]
36. Varying effects of tree cover on relationships between satellite-observed vegetation greenup date and spring temperature across Eurasian boreal forests. Ding C; Meng Y; Huang W; Xie Q Sci Total Environ; 2023 Nov; 899():165650. PubMed ID: 37474076 [TBL] [Abstract][Full Text] [Related]
37. Boreal tree species diversity increases with global warming but is reversed by extremes. Xi Y; Zhang W; Wei F; Fang Z; Fensholt R Nat Plants; 2024 Oct; 10(10):1473-1483. PubMed ID: 39261713 [TBL] [Abstract][Full Text] [Related]
38. New tree-ring data from Canadian boreal and hemi-boreal forests provide insight for improving the climate sensitivity of terrestrial biosphere models. Mirabel A; Girardin MP; Metsaranta J; Campbell EM; Arsenault A; Reich PB; Way D Sci Total Environ; 2022 Dec; 851(Pt 2):158062. PubMed ID: 35981579 [TBL] [Abstract][Full Text] [Related]
39. Warming-induced tree growth may help offset increasing disturbance across the Canadian boreal forest. Wang J; Taylor AR; D'Orangeville L Proc Natl Acad Sci U S A; 2023 Jan; 120(2):e2212780120. PubMed ID: 36595673 [TBL] [Abstract][Full Text] [Related]
40. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest. Young-Robertson JM; Bolton WR; Bhatt US; Cristóbal J; Thoman R Sci Rep; 2016 Jul; 6():29504. PubMed ID: 27404274 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]