These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 18826924)

  • 1. The redox state of the mantle during and just after core formation.
    Frost DJ; Mann U; Asahara Y; Rubie DC
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4315-37. PubMed ID: 18826924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accretion and core formation: constraints from metal-silicate partitioning.
    Wood BJ
    Philos Trans A Math Phys Eng Sci; 2008 Nov; 366(1883):4339-55. PubMed ID: 18826926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle.
    Frost DJ; Liebske C; Langenhorst F; McCammon CA; Trønnes RG; Rubie DC
    Nature; 2004 Mar; 428(6981):409-12. PubMed ID: 15042086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox systematics of a magma ocean with variable pressure-temperature gradients and composition.
    Righter K; Ghiorso MS
    Proc Natl Acad Sci U S A; 2012 Jul; 109(30):11955-60. PubMed ID: 22778438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a late chondritic veneer in the Earth's mantle from high-pressure partitioning of palladium and platinum.
    Holzheid A; Sylvester P; O'Neill HS; Rubie DC; Palme HS
    Nature; 2000 Jul; 406(6794):396-9. PubMed ID: 10935633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning of oxygen during core formation on the Earth and Mars.
    Rubie DC; Gessmann CK; Frost DJ
    Nature; 2004 May; 429(6987):58-61. PubMed ID: 15129278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly siderophile elements were stripped from Earth's mantle by iron sulfide segregation.
    Rubie DC; Laurenz V; Jacobson SA; Morbidelli A; Palme H; Vogel AK; Frost DJ
    Science; 2016 Sep; 353(6304):1141-4. PubMed ID: 27609889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asteroid bombardment and the core of Theia as possible sources for the Earth's late veneer component.
    Sleep NH
    Geochem Geophys Geosyst; 2016 Jul; 17(7):2623-2642. PubMed ID: 35095346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Earth's 'missing' niobium may be in the core.
    Wade J; Wood BJ
    Nature; 2001 Jan; 409(6816):75-8. PubMed ID: 11343115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accretion of the Earth and segregation of its core.
    Wood BJ; Walter MJ; Wade J
    Nature; 2006 Jun; 441(7095):825-33. PubMed ID: 16778882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of core formation on the Hf-W isotopic composition of the Earth and dating of the Moon-forming impact.
    Fischer RA; Nimmo F
    Earth Planet Sci Lett; 2018 Oct; 499():257-265. PubMed ID: 31213724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FeO2 and FeOOH under deep lower-mantle conditions and Earth's oxygen-hydrogen cycles.
    Hu Q; Kim DY; Yang W; Yang L; Meng Y; Zhang L; Mao HK
    Nature; 2016 Jun; 534(7606):241-4. PubMed ID: 27279220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep magma ocean formation set the oxidation state of Earth's mantle.
    Armstrong K; Frost DJ; McCammon CA; Rubie DC; Boffa Ballaran T
    Science; 2019 Aug; 365(6456):903-906. PubMed ID: 31467218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-chondritic sulphur isotope composition of the terrestrial mantle.
    Labidi J; Cartigny P; Moreira M
    Nature; 2013 Sep; 501(7466):208-11. PubMed ID: 24005324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Terrestrial accretion under oxidizing conditions.
    Siebert J; Badro J; Antonangeli D; Ryerson FJ
    Science; 2013 Mar; 339(6124):1194-7. PubMed ID: 23306436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fate of nitrogen during core-mantle separation on Earth.
    Grewal DS; Dasgupta R; Holmes AK; Costin G; Li Y; Tsuno K
    Geochim Cosmochim Acta; 2019 Apr; 251():87-115. PubMed ID: 35153302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Core formation and core composition from coupled geochemical and geophysical constraints.
    Badro J; Brodholt JP; Piet H; Siebert J; Ryerson FJ
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12310-4. PubMed ID: 26392555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen isotopic evidence for early oxidation of silicate Earth.
    Pahlevan K; Schaefer L; Hirschmann MM
    Earth Planet Sci Lett; 2019 Nov; 526():. PubMed ID: 33688096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Earth's missing lead may not be in the core.
    Lagos M; Ballhaus C; Münker C; Wohlgemuth-Ueberwasser C; Berndt J; Kuzmin DV
    Nature; 2008 Nov; 456(7218):89-92. PubMed ID: 18987741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon and other light element contents in the Earth's core based on first-principles molecular dynamics.
    Zhang Y; Yin QZ
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19579-83. PubMed ID: 23150591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.