These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 1882706)

  • 1. Bovine serum albumin interacts with bacterial luciferase.
    Makemson JC; Hastings JW
    J Biolumin Chemilumin; 1991; 6(2):131-6. PubMed ID: 1882706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between aldehyde derivatives and the aldehyde binding site of bacterial luciferase.
    Jockers R; Ziegler T; Schmid RD
    J Biolumin Chemilumin; 1995; 10(1):21-7. PubMed ID: 7762412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioluminescence decay kinetics in the reaction of bacterial luciferase with different aldehydes.
    Ismailov AD; Sobolev AYu ; Danilov VS
    J Biolumin Chemilumin; 1990; 5(3):213-7. PubMed ID: 2220421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental sulfur: toxicity in vivo and in vitro to bacterial luciferase, in vitro yeast alcohol dehydrogenase, and bovine liver catalase.
    Cetkauskaite A; Pessala P; Södergren A
    Environ Toxicol; 2004 Aug; 19(4):372-86. PubMed ID: 15269910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction.
    Francisco WA; Abu-Soud HM; DelMonte AJ; Singleton DA; Baldwin TO; Raushel FM
    Biochemistry; 1998 Feb; 37(8):2596-606. PubMed ID: 9485410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay.
    Hosseinkhani S; Szittner R; Meighen EA
    Biochem J; 2005 Jan; 385(Pt 2):575-80. PubMed ID: 15352872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between the conserved alpha subunit arginine 107 and effects of phosphate on the activity and stability of Vibrio harveyi luciferase.
    Moore C; Lei B; Tu SC
    Arch Biochem Biophys; 1999 Oct; 370(1):45-50. PubMed ID: 10496975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of bacterial luciferase with aldehyde substrates and inhibitors.
    Francisco WA; Abu-Soud HM; Baldwin TO; Raushel FM
    J Biol Chem; 1993 Nov; 268(33):24734-41. PubMed ID: 8227032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Delta-9-tetrahydrocannabinol and theophylline: in vitro interaction with bovine serum albumin.
    Ghosh SK; Poddar MK
    Indian J Biochem Biophys; 1993 Feb; 30(1):21-5. PubMed ID: 8389726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cyanide-aldehyde complex inhibits bacterial luciferase.
    Makemson JC
    J Bacteriol; 1990 Aug; 172(8):4725-7. PubMed ID: 2376571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of bacterial bioluminescence in water-organic media.
    Sukovataya IE; Tyulkova NA
    Luminescence; 2001; 16(4):271-3. PubMed ID: 11512142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of Photobacterium leiognathi and Vibrio fischeri Y1 luciferases with fluorescent (antenna) proteins: bioluminescence effects of the aliphatic additive.
    Petushkov VN; Ketelaars M; Gibson BG; Lee J
    Biochemistry; 1996 Sep; 35(37):12086-93. PubMed ID: 8810914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytoplasmic factors that affect the intensity and stability of bioluminescence from firefly luciferase in living mammalian cells.
    Gandelman O; Allue I; Bowers K; Cobbold P
    J Biolumin Chemilumin; 1994; 9(6):363-71. PubMed ID: 7879652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the functionalities of alphaGlu328 and alphaAla74 of Vibrio harveyi luciferase by site-directed mutagenesis and chemical rescue.
    Li CH; Tu SC
    Biochemistry; 2005 Oct; 44(42):13866-73. PubMed ID: 16229475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Effect of phenobarbital on the luminescence system of luminous bacteria].
    Vysotskiĭ ES; Zavoruev VV; Mezhevikin VV
    Mikrobiologiia; 1981; 50(6):985-91. PubMed ID: 6977084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the aldehyde binding site of bacterial luciferase by photoaffinity labeling.
    Tu SC; Henkin J
    Biochemistry; 1983 Jan; 22(2):519-23. PubMed ID: 6824641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pathway of synthesis of the aldehyde factor - a basic substrate of luciferase].
    Popova LIu; Shenderov AN
    Biokhimiia; 1983 Jun; 48(6):983-90. PubMed ID: 6882834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase.
    Lin LY; Szittner R; Friedman R; Meighen EA
    Biochemistry; 2004 Mar; 43(11):3183-94. PubMed ID: 15023068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding.
    Lei B; Cho KW; Tu SC
    J Biol Chem; 1994 Feb; 269(8):5612-8. PubMed ID: 8119897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.