BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 18827931)

  • 21. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning the redox properties of manganese(II) and its implications to the electrochemistry of manganese and iron superoxide dismutases.
    Sjödin M; Gätjens J; Tabares LC; Thuéry P; Pecoraro VL; Un S
    Inorg Chem; 2008 Apr; 47(7):2897-908. PubMed ID: 18271528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redox reactions of hemoglobin.
    Rifkind JM; Ramasamy S; Manoharan PT; Nagababu E; Mohanty JG
    Antioxid Redox Signal; 2004 Jun; 6(3):657-66. PubMed ID: 15130293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chelate electronic properties control the redox behaviour and superoxide reactivity of seven-coordinate manganese(II) complexes.
    Liu GF; Dürr K; Puchta R; Heinemann FW; van Eldik R; Ivanović-Burmazović I
    Dalton Trans; 2009 Aug; (32):6292-5. PubMed ID: 19655061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of action of fullerene derivatives in superoxide dismutation.
    Osuna S; Swart M; Solà M
    Chemistry; 2010 Mar; 16(10):3207-14. PubMed ID: 20119990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three H₂O₂ molecules are involved in the "Fenton-like" reaction between Co(H₂O)₆²⁺ and H₂O₂.
    Burg A; Shusterman I; Kornweitz H; Meyerstein D
    Dalton Trans; 2014 Jun; 43(24):9111-5. PubMed ID: 24805267
    [TBL] [Abstract][Full Text] [Related]  

  • 27. O-O bond cleavage in dinuclear peroxo complexes of iron porphyrins: a quantum chemical study.
    Blomberg MR; Johansson AJ; Siegbahn PE
    Inorg Chem; 2007 Sep; 46(19):7992-7. PubMed ID: 17696338
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Electronic structure of hemoglobin's heme complexes with nitric oxide and dynamics of atomic base under physiological temperature].
    Romanova TA; Krasnov PO; Avramov PV
    Vopr Med Khim; 2001; 47(3):308-14. PubMed ID: 11558313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proton-directed redox control of O-O bond activation by heme hydroperoxidase models.
    Soper JD; Kryatov SV; Rybak-Akimova EV; Nocera DG
    J Am Chem Soc; 2007 Apr; 129(16):5069-75. PubMed ID: 17397153
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Spin-catalysis in the processes of photo- and bioactivation of molecular oxygen].
    Minaev BF
    Ukr Biokhim Zh (1999); 2009; 81(3):21-45. PubMed ID: 19877428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistical studies on the formation of isotopomers of hydrogen peroxide (HOOH), hydrotrioxy (HOOO), and dihydrogentrioxide (HOOOH) in electron-irradiated H(2)(18)O/O(2) ice mixtures.
    Zheng W; Jewitt D; Kaiser RI
    Phys Chem Chem Phys; 2007 May; 9(20):2556-63. PubMed ID: 17508088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The new chemical biology of nitrite reactions with hemoglobin: R-state catalysis, oxidative denitrosylation, and nitrite reductase/anhydrase.
    Gladwin MT; Grubina R; Doyle MP
    Acc Chem Res; 2009 Jan; 42(1):157-67. PubMed ID: 18783254
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme.
    Katona G; Carpentier P; Nivière V; Amara P; Adam V; Ohana J; Tsanov N; Bourgeois D
    Science; 2007 Apr; 316(5823):449-53. PubMed ID: 17446401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic C-H activation by metal-superoxo intermediates.
    Bollinger JM; Krebs C
    Curr Opin Chem Biol; 2007 Apr; 11(2):151-8. PubMed ID: 17374503
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peroxo-type intermediates in class I ribonucleotide reductase and related binuclear non-heme iron enzymes.
    Jensen KP; Bell CB; Clay MD; Solomon EI
    J Am Chem Soc; 2009 Sep; 131(34):12155-71. PubMed ID: 19663382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons.
    Santolini J
    J Inorg Biochem; 2011 Feb; 105(2):127-41. PubMed ID: 21194610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic redox behavior of the heme centers of cbb3 heme-copper oxygen reductase from Bradyrhizobium japonicum.
    Veríssimo AF; Sousa FL; Baptista AM; Teixeira M; Pereira MM
    Biochemistry; 2007 Nov; 46(46):13245-53. PubMed ID: 17963363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective.
    Sahu S; Goldberg DP
    J Am Chem Soc; 2016 Sep; 138(36):11410-28. PubMed ID: 27576170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Catalytic oxidation of organic substrates by molecular oxygen and hydrogen peroxide by multistep electron transfer--a biomimetic approach.
    Piera J; Bäckvall JE
    Angew Chem Int Ed Engl; 2008; 47(19):3506-23. PubMed ID: 18383499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pulse radiolysis investigation on the mechanism of the catalytic action of Mn(II)-pentaazamacrocycle compounds as superoxide dismutase mimetics.
    Maroz A; Kelso GF; Smith RA; Ware DC; Anderson RF
    J Phys Chem A; 2008 Jun; 112(22):4929-35. PubMed ID: 18473451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.