These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 18828028)

  • 1. Muscle forces during running predicted by gradient-based and random search static optimisation algorithms.
    Miller RH; Gillette JC; Derrick TR; Caldwell GE
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):217-25. PubMed ID: 18828028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid static optimisation method to estimate muscle forces during muscle co-activation.
    Son J; Hwang S; Kim Y
    Comput Methods Biomech Biomed Engin; 2012; 15(3):249-54. PubMed ID: 21302162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.
    Heintz S; Gutierrez-Farewik EM
    Gait Posture; 2007 Jul; 26(2):279-88. PubMed ID: 17071088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed.
    Neptune RR; Sasaki K
    J Exp Biol; 2005 Mar; 208(Pt 5):799-808. PubMed ID: 15755878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of different methods for estimating muscle forces in human movement.
    Lin YC; Dorn TW; Schache AG; Pandy MG
    Proc Inst Mech Eng H; 2012 Feb; 226(2):103-12. PubMed ID: 22468462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait.
    Bogey RA; Perry J; Gitter AJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):302-10. PubMed ID: 16200754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A physiology-based inverse dynamic analysis of human gait using sequential convex programming: a comparative study.
    De Groote F; Demeulenaere B; Swevers J; De Schutter J; Jonkers I
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1093-102. PubMed ID: 21878002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The simplification of the muscle force prediction using sensitivity analyses.
    Vejpustková J; Vilímek M; Sochor M
    Technol Health Care; 2006; 14(4-5):215-8. PubMed ID: 17065744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking.
    Fraysse F; Dumas R; Cheze L; Wang X
    J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodological aspects of SEMG recordings for force estimation--a tutorial and review.
    Staudenmann D; Roeleveld K; Stegeman DF; van Dieën JH
    J Electromyogr Kinesiol; 2010 Jun; 20(3):375-87. PubMed ID: 19758823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting.
    Chumanov ES; Heiderscheit BC; Thelen DG
    J Biomech; 2007; 40(16):3555-62. PubMed ID: 17659291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation.
    de Groot JH; Rozendaal LA; Meskers CG; Arwert HJ
    Clin Biomech (Bristol, Avon); 2004 Oct; 19(8):790-800. PubMed ID: 15342151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hamstring muscle forces prior to and immediately following an acute sprinting-related muscle strain injury.
    Schache AG; Kim HJ; Morgan DL; Pandy MG
    Gait Posture; 2010 May; 32(1):136-40. PubMed ID: 20395142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of muscle activation in relation to force direction: a multi-channel surface electromyography study on the triceps surae muscle.
    Staudenmann D; Kingma I; Daffertshofer A; Stegeman DF; van Dieën JH
    J Electromyogr Kinesiol; 2009 Oct; 19(5):882-95. PubMed ID: 18556216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional differences in the activity of the hamstring muscles with increasing running speed.
    Higashihara A; Ono T; Kubota J; Okuwaki T; Fukubayashi T
    J Sports Sci; 2010 Aug; 28(10):1085-92. PubMed ID: 20672221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model for insect locomotion in the horizontal plane: feedforward activation of fast muscles, stability, and robustness.
    Kukillaya RP; Holmes P
    J Theor Biol; 2009 Nov; 261(2):210-26. PubMed ID: 19660474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.