BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 18828144)

  • 1. Nanoscale organization of CD4 molecules of human T helper cell mapped by NSOM and quantum dots.
    Chen J; Wu Y; Wang C; Cai J
    Scanning; 2008; 30(6):448-51. PubMed ID: 18828144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale organization of the pathogen receptor DC-SIGN mapped by single-molecule high-resolution fluorescence microscopy.
    de Bakker BI; de Lange F; Cambi A; Korterik JP; van Dijk EM; van Hulst NF; Figdor CG; Garcia-Parajo MF
    Chemphyschem; 2007 Jul; 8(10):1473-80. PubMed ID: 17577901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NSOM/QD-based direct visualization of CD3-induced and CD28-enhanced nanospatial coclustering of TCR and coreceptor in nanodomains in T cell activation.
    Zhong L; Zeng G; Lu X; Wang RC; Gong G; Yan L; Huang D; Chen ZW
    PLoS One; 2009 Jun; 4(6):e5945. PubMed ID: 19536289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NSOM/QD-based fluorescence-topographic image fusion directly reveals nano-spatial peak-valley polarities of CD69 and CD71 activation molecules on cell-membrane fluctuations during T-cell activation.
    Zhong L; Zhang Z; Lu X; Huang D; Chen CY; Wang R; Chen ZW
    Immunol Lett; 2011 Oct; 140(1-2):44-51. PubMed ID: 21704079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AFM- and NSOM-based force spectroscopy and distribution analysis of CD69 molecules on human CD4+ T cell membrane.
    Hu M; Chen J; Wang J; Wang X; Ma S; Cai J; Chen CY; Chen ZW
    J Mol Recognit; 2009; 22(6):516-20. PubMed ID: 19670272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration mechanism of mesenchymal stem cells studied by QD/NSOM.
    Ke C; Chen J; Guo Y; Chen ZW; Cai J
    Biochim Biophys Acta; 2015 Mar; 1848(3):859-68. PubMed ID: 25534714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe.
    Stern L; Desiatov B; Goykhman I; Lerman GM; Levy U
    Opt Express; 2011 Jun; 19(13):12014-20. PubMed ID: 21716436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential near-field scanning optical microscopy.
    Ozcan A; Cubukcu E; Bilenca A; Crozier KB; Bouma BE; Capasso F; Tearney GJ
    Nano Lett; 2006 Nov; 6(11):2609-16. PubMed ID: 17090100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Near-field scanning optical microscopy for bioanalysis at nanometer resolution.
    Wabuyele MB; Culha M; Griffin GD; Viallet PM; Vo-Dinh T
    Methods Mol Biol; 2005; 300():437-52. PubMed ID: 15657496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale fluorescence correlation spectroscopy on intact living cell membranes with NSOM probes.
    Manzo C; van Zanten TS; Garcia-Parajo MF
    Biophys J; 2011 Jan; 100(2):L8-10. PubMed ID: 21244822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NSOM/QD-based nanoscale immunofluorescence imaging of antigen-specific T-cell receptor responses during an in vivo clonal Vγ2Vδ2 T-cell expansion.
    Chen Y; Shao L; Ali Z; Cai J; Chen ZW
    Blood; 2008 Apr; 111(8):4220-32. PubMed ID: 18039956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale Relationship Between CD4 and CD25 of T Cells Visualized with NSOM/QD-Based Dual-Color Imaging System.
    Fan J; Lu X; Liu S; Zhong L
    Nanoscale Res Lett; 2015 Dec; 10(1):419. PubMed ID: 26497734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A human mutant CD4 molecule resistant to HIV-1 binding restores helper T-lymphocyte functions in murine CD4-deficient mice.
    Kim DK; Tahara-Hanaoka S; Shinohara N; Nakauchi H
    Exp Mol Med; 2007 Feb; 39(1):1-7. PubMed ID: 17334223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field optical study of protein transport kinetics at a single nuclear pore.
    Herrmann M; Neuberth N; Wissler J; Pérez J; Gradl D; Naber A
    Nano Lett; 2009 Sep; 9(9):3330-6. PubMed ID: 19591452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum dot labeling based on near-field optical imaging of CD44 molecules.
    Chen J; Pei Y; Chen Z; Cai J
    Micron; 2010 Apr; 41(3):198-202. PubMed ID: 19959369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale live-cell imaging using hopping probe ion conductance microscopy.
    Novak P; Li C; Shevchuk AI; Stepanyan R; Caldwell M; Hughes S; Smart TG; Gorelik J; Ostanin VP; Lab MJ; Moss GW; Frolenkov GI; Klenerman D; Korchev YE
    Nat Methods; 2009 Apr; 6(4):279-81. PubMed ID: 19252505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule imaging of cell surfaces using near-field nanoscopy.
    Hinterdorfer P; Garcia-Parajo MF; Dufrêne YF
    Acc Chem Res; 2012 Mar; 45(3):327-36. PubMed ID: 21992025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4(+) T helper cells and the role they play in viral control.
    Norris PJ; Rosenberg ES
    J Mol Med (Berl); 2002 Jul; 80(7):397-405. PubMed ID: 12110945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realizing the biological and biomedical potential of nanoscale imaging using a pipette probe.
    Shevchuk AI; Novak P; Takahashi Y; Clarke R; Miragoli M; Babakinejad B; Gorelik J; Korchev YE; Klenerman D
    Nanomedicine (Lond); 2011 Apr; 6(3):565-75. PubMed ID: 21542692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared nano-imaging spectroscopy using a phase change mask method.
    Sato Y; Kanazawa S; Saiki T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i10. PubMed ID: 25359798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.