BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 18828598)

  • 1. Bead-based mesofluidic system for residue analysis of chloramphenicol.
    Zhang D; Zuo P; Ye BC
    J Agric Food Chem; 2008 Nov; 56(21):9862-7. PubMed ID: 18828598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicomponent mesofluidic system for the detection of veterinary drug residues based on competitive immunoassay.
    Hu L; Zuo P; Ye BC
    Anal Biochem; 2010 Oct; 405(1):89-95. PubMed ID: 20621709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sensitive immunoassay based on direct hapten coated format and biotin-streptavidin system for the detection of chloramphenicol.
    Sai N; Chen Y; Liu N; Yu G; Su P; Feng Y; Zhou Z; Liu X; Zhou H; Gao Z; Ning BA
    Talanta; 2010 Sep; 82(4):1113-21. PubMed ID: 20801306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive immunoassay by capillary electrophoresis with laser-induced fluorescence for the trace detection of chloramphenicol in animal-derived foods.
    Zhang C; Wang S; Fang G; Zhang Y; Jiang L
    Electrophoresis; 2008 Aug; 29(16):3422-8. PubMed ID: 18633946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite.
    Zhang N; Xiao F; Bai J; Lai Y; Hou J; Xian Y; Jin L
    Talanta; 2011 Dec; 87():100-5. PubMed ID: 22099655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk.
    Xu J; Yin W; Zhang Y; Yi J; Meng M; Wang Y; Xue H; Zhang T; Xi R
    Food Chem; 2012 Oct; 134(4):2526-31. PubMed ID: 23442720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiluminescence immunoassay for chloramphenicol.
    Lin S; Han SQ; Liu YB; Xu WG; Guan GY
    Anal Bioanal Chem; 2005 Jul; 382(5):1250-5. PubMed ID: 15977032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ultrasensitive chemiluminescence immunoassay of chloramphenicol based on gold nanoparticles and magnetic beads.
    Tao X; Jiang H; Yu X; Zhu J; Wang X; Wang Z; Niu L; Wu X; Shen J
    Drug Test Anal; 2013 May; 5(5):346-52. PubMed ID: 23512826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoresponsive colorimetric immunoassay based on chitosan modified AgI/TiO
    Chang H; Lv J; Zhang H; Zhang B; Wei W; Qiao Y
    Biosens Bioelectron; 2017 Jan; 87():579-586. PubMed ID: 27619522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR.
    Duan Y; Wang L; Gao Z; Wang H; Zhang H; Li H
    Talanta; 2017 Apr; 165():671-676. PubMed ID: 28153315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol.
    Yang K; Hu Y; Dong N
    Biosens Bioelectron; 2016 Jun; 80():373-377. PubMed ID: 26866562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a homogeneous immunoassay based on the AlphaLISA method for the detection of chloramphenicol in milk, honey and eggs.
    Zhang Y; Huang B; Zhang J; Wang K; Jin J
    J Sci Food Agric; 2012 Jul; 92(9):1944-7. PubMed ID: 22234784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface plasmon resonance assay for chloramphenicol without surface regeneration.
    Yuan J; Addo J; Aguilar MI; Wu Y
    Anal Biochem; 2009 Jul; 390(1):97-9. PubMed ID: 19358818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a new fluorescence immunochromatography strip for detection of chloramphenicol residues in chicken muscles.
    Bai Z; Luo Y; Xu W; Gao H; Han P; Liu T; Wang H; Chen A; Huang K
    J Sci Food Agric; 2013 Dec; 93(15):3743-7. PubMed ID: 23681760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk.
    Byzova NA; Zvereva EA; Zherdev AV; Eremin SA; Dzantiev BB
    Talanta; 2010 May; 81(3):843-8. PubMed ID: 20298863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue.
    Que X; Tang D; Xia B; Lu M; Tang D
    Anal Chim Acta; 2014 Jun; 830():42-8. PubMed ID: 24856510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples.
    Yuan M; Sheng W; Zhang Y; Wang J; Yang Y; Zhang S; Goryacheva IY; Wang S
    Anal Chim Acta; 2012 Nov; 751():128-34. PubMed ID: 23084061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro chloramphenicol detection in a Haemophilus influenza model using an aptamer-polymer based electrochemical biosensor.
    Yadav SK; Agrawal B; Chandra P; Goyal RN
    Biosens Bioelectron; 2014 May; 55():337-42. PubMed ID: 24412768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay.
    Zhao M; Li X; Zhang Y; Wang Y; Wang B; Zheng L; Zhang D; Zhuang S
    Food Chem; 2021 Mar; 339():127857. PubMed ID: 32866699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Optimization of a method of solid-phase immunoenzyme analysis for determination of chloramphenicol in milk].
    Kolosova AIu; Samsonova ZhV; Egorov AM; Shevaleva SA; Orlova NG; Kiseleva TV; Khotimchenko SA; Tutel'ian VA
    Vopr Pitan; 1999; 68(1):23-7. PubMed ID: 10198960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.