BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 18828841)

  • 1. Environmental conditions impinge on dragline silk protein composition.
    Guehrs KH; Schlott B; Grosse F; Weisshart K
    Insect Mol Biol; 2008 Sep; 17(5):553-64. PubMed ID: 18828841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of proline on the network structure of major ampullate silks as inferred from their mechanical and optical properties.
    Savage KN; Gosline JM
    J Exp Biol; 2008 Jun; 211(Pt 12):1937-47. PubMed ID: 18515724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the protein components of Nephila clavipes dragline silk.
    Sponner A; Schlott B; Vollrath F; Unger E; Grosse F; Weisshart K
    Biochemistry; 2005 Mar; 44(12):4727-36. PubMed ID: 15779899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation of the divergence of major ampullate silk fibers from Nephila clavipes and Argiope aurantia.
    Brooks AE; Steinkraus HB; Nelson SR; Lewis RV
    Biomacromolecules; 2005; 6(6):3095-9. PubMed ID: 16283732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The molecular structures of major ampullate silk proteins of the wasp spider, Argiope bruennichi: a second blueprint for synthesizing de novo silk.
    Zhang Y; Zhao AC; Sima YH; Lu C; Xiang ZH; Nakagaki M
    Comp Biochem Physiol B Biochem Mol Biol; 2013 Mar; 164(3):151-8. PubMed ID: 23262065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the conserved N-terminal domains in major ampullate spider silk proteins.
    Motriuk-Smith D; Smith A; Hayashi CY; Lewis RV
    Biomacromolecules; 2005; 6(6):3152-9. PubMed ID: 16283740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of model peptides based on Nephila clavipes dragline silk spidroin (MaSp1) studied by 13C cross polarization/magic angle spinning NMR.
    Yang M; Nakazawa Y; Yamauchi K; Knight D; Asakura T
    Biomacromolecules; 2005; 6(6):3220-6. PubMed ID: 16283749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization and evolutionary study of spider tubuliform (eggcase) silk protein.
    Tian M; Lewis RV
    Biochemistry; 2005 Jun; 44(22):8006-12. PubMed ID: 15924419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes.
    Gaines WA; Marcotte WR
    Insect Mol Biol; 2008 Sep; 17(5):465-74. PubMed ID: 18828837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein composition correlates with the mechanical properties of spider ( Argiope trifasciata ) dragline silk.
    Marhabaie M; Leeper TC; Blackledge TA
    Biomacromolecules; 2014 Jan; 15(1):20-9. PubMed ID: 24313814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Araneoid egg case silk: a fibroin with novel ensemble repeat units from the black widow spider, Latrodectus hesperus.
    Hu X; Lawrence B; Kohler K; Falick AM; Moore AM; McMullen E; Jones PR; Vierra C
    Biochemistry; 2005 Aug; 44(30):10020-7. PubMed ID: 16042378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels.
    Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G
    Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.
    Blamires SJ; Kasumovic MM; Tso IM; Martens PJ; Hook JM; Rawal A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and expression of a cDNA encoding a tubuliform silk protein of the golden web spider Nephila antipodiana.
    Huang W; Lin Z; Sin YM; Li D; Gong Z; Yang D
    Biochimie; 2006 Jul; 88(7):849-58. PubMed ID: 16616407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential polymerization of the two main protein components of dragline silk during fibre spinning.
    Sponner A; Unger E; Grosse F; Weisshart K
    Nat Mater; 2005 Oct; 4(10):772-5. PubMed ID: 16184170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs.
    Geurts P; Zhao L; Hsia Y; Gnesa E; Tang S; Jeffery F; La Mattina C; Franz A; Larkin L; Vierra C
    Biomacromolecules; 2010 Dec; 11(12):3495-503. PubMed ID: 21053953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus.
    Lawrence BA; Vierra CA; Moore AM
    Biomacromolecules; 2004; 5(3):689-95. PubMed ID: 15132648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread.
    Sponner A; Unger E; Grosse F; Weisshart K
    Biomacromolecules; 2004; 5(3):840-5. PubMed ID: 15132670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular studies of a novel dragline silk from a nursery web spider, Euprosthenops sp. (Pisauridae).
    Pouchkina-Stantcheva NN; McQueen-Mason SJ
    Comp Biochem Physiol B Biochem Mol Biol; 2004 Aug; 138(4):371-6. PubMed ID: 15325337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.