These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 18829)

  • 21. Conformations of nicotinamide coenzymes bound to dehydrogenases determined by transferred nuclear Overhauser effects.
    Levy HR; Ejchart A; Levy GC
    Biochemistry; 1983 Jun; 22(12):2792-6. PubMed ID: 6871163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Glucose-6-phosphate dehydrogenase, the pentose phosphate cycle, and its place in carbohydrate metabolism.
    Horecker BL
    Am J Clin Pathol; 1967 Mar; 47(3):271-81. PubMed ID: 4381231
    [No Abstract]   [Full Text] [Related]  

  • 23. Dehydrogenase and transhydrogenase properties of the soluble NADH dehydrogenase of bovine heart mitochondria.
    Hatefi Y; Galante YM
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):846-50. PubMed ID: 15255
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pathways of NADPH formation in Escherichia coli.
    Csonka LN; Fraenkel DG
    J Biol Chem; 1977 May; 252(10):3382-91. PubMed ID: 16899
    [No Abstract]   [Full Text] [Related]  

  • 25. Isolation and properties of muscular glucose dehydrogenase (E.C. 1.1.1.47) from the stomachs of geese and ducks.
    Brzek K
    Arch Immunol Ther Exp (Warsz); 1977; 25(1):111-21. PubMed ID: 18127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The interaction of reduced nicotinamide--adenine dinucleotide phosphate with reduced nicotinamide--adenine dinucleotide--ubiquinone reductase from bovine heart mitochondria.
    Ragan CI
    Biochem J; 1976 Jul; 158(1):149-51. PubMed ID: 9075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PATHWAYS OF GLUCOSE METABOLISM IN RAT SUBMAXILLARY GLAND.
    GOLDMAN J; ROSALES F; VILLAVICENCIO M; GUERRA R
    Biochim Biophys Acta; 1964 Feb; 82():303-12. PubMed ID: 14123565
    [No Abstract]   [Full Text] [Related]  

  • 28. Kinetic studies on microsomal glucose dehydrogenase in rat liver.
    Endou H; Neuhoff V
    Hoppe Seylers Z Physiol Chem; 1975 Sep; 356(9):1381-96. PubMed ID: 240770
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the oxidation of reduced nicotinamide dinucleotide phosphate by submitochondrial particles from beef heart.
    Rydström J; Hoek JB; Ernster L
    Biochim Biophys Acta; 1973 Jun; 305(3):694-8. PubMed ID: 4147424
    [No Abstract]   [Full Text] [Related]  

  • 30. [Carbohydrate and pyruvic acid degradation pathways in Fusidium coccineum strains with varying levels of antibiotic synthesis].
    Gol'dshteĭn VL; Mironov VA; Bartoshevich IuE; Minina TS
    Antibiotiki; 1976 Oct; 21(10):887-92. PubMed ID: 11736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lactate dehydrogenase isoenzymes of sperm cells and tests.
    Clausen J
    Biochem J; 1969 Jan; 111(2):207-18. PubMed ID: 4303363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pyridine nucleotide regulation of cardiac intermediary metabolism.
    Ussher JR; Jaswal JS; Lopaschuk GD
    Circ Res; 2012 Aug; 111(5):628-41. PubMed ID: 22904042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides: revised kinetic mechanism and kinetics of ATP inhibition.
    Levy HR; Christoff M; Ingulli J; Ho EM
    Arch Biochem Biophys; 1983 Apr; 222(2):473-88. PubMed ID: 6847197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nonenzymic hydrogen transfer between reduced and oxidized pyridine nucleotides.
    Bernofsky C; Gallagher WJ
    Biochim Biophys Acta; 1981 May; 659(1):1-6. PubMed ID: 7248310
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium.
    Asahina T; Kashiwagi A; Nishio Y; Ikebuchi M; Harada N; Tanaka Y; Takagi Y; Saeki Y; Kikkawa R; Shigeta Y
    Diabetes; 1995 May; 44(5):520-6. PubMed ID: 7729609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Formation and purification of the oxidoreductase inhibitor from NAD (AUTHOR'S TRANSL)].
    Gallati H
    J Clin Chem Clin Biochem; 1976 Jan; 14(1):3-8. PubMed ID: 6616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1975 Aug; 396(2):260-75. PubMed ID: 239745
    [TBL] [Abstract][Full Text] [Related]  

  • 38. THE EFFECT OF DIFFERENT HORMONAL CONDITIONS ON THE CONCENTRATION AND OXIDOREDUCTION STATE OF THE NICOTINAMIDE NUCLEOTIDES OF RAT LIVER.
    GREENBAUM AL; CLARK JB
    Biochem J; 1965 Apr; 95(1):167-79. PubMed ID: 14333553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of the NADPH/NADP+ ratio on the activities of hexose-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase.
    Oka K; Takahashi T; Hori SH
    Biochim Biophys Acta; 1981 Dec; 662(2):318-25. PubMed ID: 7317444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The energy metabolism of the leukocyte. IX. Changes in the concentration of the coenzymes NAD, NADH, NADP, and NADPH in polymorphonuclear leukocytes during phagocytosis of Staphylococcus albus and due to the action of phospholipase C.
    Aellig A; Maillard M; Phavorin A; Frei J
    Enzyme; 1977; 22(3):207-12. PubMed ID: 16747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.