These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18829357)

  • 1. Data mining PubChem using a support vector machine with the Signature molecular descriptor: classification of factor XIa inhibitors.
    Weis DC; Visco DP; Faulon JL
    J Mol Graph Model; 2008 Nov; 27(4):466-75. PubMed ID: 18829357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.
    Shen MY; Su BH; Esposito EX; Hopfinger AJ; Tseng YJ
    Chem Res Toxicol; 2011 Jun; 24(6):934-49. PubMed ID: 21504223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SVM-based feature selection for characterization of focused compound collections.
    Byvatov E; Schneider G
    J Chem Inf Comput Sci; 2004; 44(3):993-9. PubMed ID: 15154767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. hERG classification model based on a combination of support vector machine method and GRIND descriptors.
    Li Q; Jørgensen FS; Oprea T; Brunak S; Taboureau O
    Mol Pharm; 2008; 5(1):117-27. PubMed ID: 18197627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GPU accelerated support vector machines for mining high-throughput screening data.
    Liao Q; Wang J; Webster Y; Watson IA
    J Chem Inf Model; 2009 Dec; 49(12):2718-25. PubMed ID: 19961205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of small molecule aggregators from large compound libraries by support vector machines.
    Rao H; Li Z; Li X; Ma X; Ung C; Li H; Liu X; Chen Y
    J Comput Chem; 2010 Mar; 31(4):752-63. PubMed ID: 19569201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of factor Xa inhibitors by machine learning methods.
    Lin HH; Han LY; Yap CW; Xue Y; Liu XH; Zhu F; Chen YZ
    J Mol Graph Model; 2007 Sep; 26(2):505-18. PubMed ID: 17418603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data mining a small molecule drug screening representative subset from NIH PubChem.
    Xie XQ; Chen JZ
    J Chem Inf Model; 2008 Mar; 48(3):465-75. PubMed ID: 18302356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of cytochrome P450 1A2 inhibitors and noninhibitors by machine learning techniques.
    Vasanthanathan P; Taboureau O; Oostenbrink C; Vermeulen NP; Olsen L; Jørgensen FS
    Drug Metab Dispos; 2009 Mar; 37(3):658-64. PubMed ID: 19056915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR study of Akt/protein kinase B (PKB) inhibitors using support vector machine.
    Dong X; Jiang C; Hu H; Yan J; Chen J; Hu Y
    Eur J Med Chem; 2009 Oct; 44(10):4090-7. PubMed ID: 19497644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction models of human plasma protein binding rate and oral bioavailability derived by using GA-CG-SVM method.
    Ma CY; Yang SY; Zhang H; Xiang ML; Huang Q; Wei YQ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):677-82. PubMed ID: 18455346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual screening of Abl inhibitors from large compound libraries by support vector machines.
    Liu XH; Ma XH; Tan CY; Jiang YY; Go ML; Low BC; Chen YZ
    J Chem Inf Model; 2009 Sep; 49(9):2101-10. PubMed ID: 19689138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
    Fang X; Bagui S; Bagui S
    Comput Biol Chem; 2017 Aug; 69():110-119. PubMed ID: 28601761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds.
    Ma XH; Wang R; Yang SY; Li ZR; Xue Y; Wei YC; Low BC; Chen YZ
    J Chem Inf Model; 2008 Jun; 48(6):1227-37. PubMed ID: 18533644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of high-throughput screening data with increasing levels of noise using support vector machines, recursive partitioning, and laplacian-modified naive bayesian classifiers.
    Glick M; Jenkins JL; Nettles JH; Hitchings H; Davies JW
    J Chem Inf Model; 2006; 46(1):193-200. PubMed ID: 16426055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of different QSAR approaches to modeling CYP450 1A2 inhibition.
    Novotarskyi S; Sushko I; Körner R; Pandey AK; Tetko IV
    J Chem Inf Model; 2011 Jun; 51(6):1271-80. PubMed ID: 21598906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Support vector machines in HTS data mining: Type I MetAPs inhibition study.
    Fang J; Dong Y; Lushington GH; Ye QZ; Georg GI
    J Biomol Screen; 2006 Mar; 11(2):138-44. PubMed ID: 16418315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ADME evaluation in drug discovery. 8. The prediction of human intestinal absorption by a support vector machine.
    Hou T; Wang J; Li Y
    J Chem Inf Model; 2007; 47(6):2408-15. PubMed ID: 17929911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale annotation of small-molecule libraries using public databases.
    Zhou Y; Zhou B; Chen K; Yan SF; King FJ; Jiang S; Winzeler EA
    J Chem Inf Model; 2007; 47(4):1386-94. PubMed ID: 17608408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.