BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 18829466)

  • 1. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase.
    Jakob S; Schroeder P; Lukosz M; Büchner N; Spyridopoulos I; Altschmied J; Haendeler J
    J Biol Chem; 2008 Nov; 283(48):33155-61. PubMed ID: 18829466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707.
    Haendeler J; Hoffmann J; Brandes RP; Zeiher AM; Dimmeler S
    Mol Cell Biol; 2003 Jul; 23(13):4598-610. PubMed ID: 12808100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells.
    Haendeler J; Hoffmann J; Diehl JF; Vasa M; Spyridopoulos I; Zeiher AM; Dimmeler S
    Circ Res; 2004 Apr; 94(6):768-75. PubMed ID: 14963003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Shping 2" different cellular localizations - a potential new player in aging processes.
    Jakob S; Altschmied J; Haendeler J
    Aging (Albany NY); 2009 Jun; 1(7):664-8. PubMed ID: 20157547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Downregulation of mitochondrial telomerase reverse transcriptase induced by H2O2 is Src kinase dependent.
    Büchner N; Zschauer TC; Lukosz M; Altschmied J; Haendeler J
    Exp Gerontol; 2010 Aug; 45(7-8):558-62. PubMed ID: 20211239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SHP-2 phosphatase regulates DNA damage-induced apoptosis and G2/M arrest in catalytically dependent and independent manners, respectively.
    Yuan L; Yu WM; Xu M; Qu CK
    J Biol Chem; 2005 Dec; 280(52):42701-6. PubMed ID: 16260787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estrogen receptor-alpha and endothelial nitric oxide synthase nuclear complex regulates transcription of human telomerase.
    Grasselli A; Nanni S; Colussi C; Aiello A; Benvenuti V; Ragone G; Moretti F; Sacchi A; Bacchetti S; Gaetano C; Capogrossi MC; Pontecorvi A; Farsetti A
    Circ Res; 2008 Jul; 103(1):34-42. PubMed ID: 18519947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies.
    Babizhayev MA; Yegorov YE
    J Biomed Mater Res A; 2015 Dec; 103(12):3993-4023. PubMed ID: 26034007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Src subfamily kinases regulate nuclear export and degradation of transcription factor Nrf2 to switch off Nrf2-mediated antioxidant activation of cytoprotective gene expression.
    Niture SK; Jain AK; Shelton PM; Jaiswal AK
    J Biol Chem; 2011 Aug; 286(33):28821-28834. PubMed ID: 21690096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).
    Wheadon H; Edmead C; Welham MJ
    Biochem J; 2003 Nov; 376(Pt 1):147-57. PubMed ID: 12935294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pioglitazone activates aortic telomerase and prevents stress-induced endothelial apoptosis.
    Werner C; Gensch C; Pöss J; Haendeler J; Böhm M; Laufs U
    Atherosclerosis; 2011 May; 216(1):23-34. PubMed ID: 21396644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer.
    Wu XQ; Huang C; He X; Tian YY; Zhou DX; He Y; Liu XH; Li J
    Cell Signal; 2013 Dec; 25(12):2462-8. PubMed ID: 23993966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. eNOS-ERalpha complex goes to telomerase.
    Zeng L; Xu Q
    Circ Res; 2008 Jul; 103(1):10-2. PubMed ID: 18596262
    [No Abstract]   [Full Text] [Related]  

  • 14. Cellular functions of the dual-targeted catalytic subunit of telomerase, telomerase reverse transcriptase--potential role in senescence and aging.
    Ale-Agha N; Dyballa-Rukes N; Jakob S; Altschmied J; Haendeler J
    Exp Gerontol; 2014 Aug; 56():189-93. PubMed ID: 24583100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species induce reversible PECAM-1 tyrosine phosphorylation and SHP-2 binding.
    Maas M; Wang R; Paddock C; Kotamraju S; Kalyanaraman B; Newman PJ; Newman DK
    Am J Physiol Heart Circ Physiol; 2003 Dec; 285(6):H2336-44. PubMed ID: 12893640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The nuclear localization of 3'-phosphoinositide-dependent kinase-1 is dependent on its association with the protein tyrosine phosphatase SHP-1.
    Sephton CF; Zhang D; Lehmann TM; Pennington PR; Scheid MP; Mousseau DD
    Cell Signal; 2009 Nov; 21(11):1634-44. PubMed ID: 19591923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective down-regulation of angiotensin II receptor type 1A signaling by protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells.
    Doan T; Farmer P; Cooney T; Ali MS
    Cell Signal; 2004 Mar; 16(3):301-11. PubMed ID: 14687660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial telomerase protects cancer cells from nuclear DNA damage and apoptosis.
    Singhapol C; Pal D; Czapiewski R; Porika M; Nelson G; Saretzki GC
    PLoS One; 2013; 8(1):e52989. PubMed ID: 23326372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.
    Haendeler J; Dröse S; Büchner N; Jakob S; Altschmied J; Goy C; Spyridopoulos I; Zeiher AM; Brandt U; Dimmeler S
    Arterioscler Thromb Vasc Biol; 2009 Jun; 29(6):929-35. PubMed ID: 19265030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recruitment of the tyrosine phosphatase Src homology 2 domain tyrosine phosphatase-2 to the p85 subunit of phosphatidylinositol-3 (PI-3) kinase is required for insulin-like growth factor-I-dependent PI-3 kinase activation in smooth muscle cells.
    Kwon M; Ling Y; Maile LA; Badley-Clark J; Clemmons DR
    Endocrinology; 2006 Mar; 147(3):1458-65. PubMed ID: 16306077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.