BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 18829533)

  • 41. Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf.
    Nakai N; Kishida T; Shin-Ya M; Imanishi J; Ueda Y; Kishimoto S; Mazda O
    Gene Ther; 2007 Feb; 14(4):357-65. PubMed ID: 17024102
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BRN2 is a non-canonical melanoma tumor-suppressor.
    Hamm M; Sohier P; Petit V; Raymond JH; Delmas V; Le Coz M; Gesbert F; Kenny C; Aktary Z; Pouteaux M; Rambow F; Sarasin A; Charoenchon N; Bellacosa A; Sanchez-Del-Campo L; Mosteo L; Lauss M; Meijer D; Steingrimsson E; Jönsson GB; Cornell RA; Davidson I; Goding CR; Larue L
    Nat Commun; 2021 Jun; 12(1):3707. PubMed ID: 34140478
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tbx3 represses E-cadherin expression and enhances melanoma invasiveness.
    Rodriguez M; Aladowicz E; Lanfrancone L; Goding CR
    Cancer Res; 2008 Oct; 68(19):7872-81. PubMed ID: 18829543
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EMX homeobox genes regulate microphthalmia and alter melanocyte biology.
    Bordogna W; Hudson JD; Buddle J; Bennett DC; Beach DH; Carnero A
    Exp Cell Res; 2005 Nov; 311(1):27-38. PubMed ID: 16197942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lipopolysaccharide suppresses RANK gene expression in macrophages by down-regulating PU.1 and MITF.
    Ishii J; Kitazawa R; Mori K; McHugh KP; Morii E; Kondo T; Kitazawa S
    J Cell Biochem; 2008 Oct; 105(3):896-904. PubMed ID: 18759249
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MITF and BRN2 contribute to metastatic growth after dissemination of melanoma.
    Simmons JL; Pierce CJ; Al-Ejeh F; Boyle GM
    Sci Rep; 2017 Sep; 7(1):10909. PubMed ID: 28883623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microphthalmia transcription factor isoforms in mast cells and the heart.
    Tshori S; Sonnenblick A; Yannay-Cohen N; Kay G; Nechushtan H; Razin E
    Mol Cell Biol; 2007 Jun; 27(11):3911-9. PubMed ID: 17438132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of five antibodies as markers in the diagnosis of melanoma in cytologic preparations.
    Sheffield MV; Yee H; Dorvault CC; Weilbaecher KN; Eltoum IA; Siegal GP; Fisher DE; Chhieng DC
    Am J Clin Pathol; 2002 Dec; 118(6):930-6. PubMed ID: 12472287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The three M's: melanoma, microphthalmia-associated transcription factor and microRNA.
    Bell RE; Levy C
    Pigment Cell Melanoma Res; 2011 Dec; 24(6):1088-106. PubMed ID: 22004179
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular mechanisms in melanoma.
    Ugurel S; Houben R; Becker JC
    N Engl J Med; 2006 Sep; 355(13):1395-6; author reply 1396. PubMed ID: 17014045
    [No Abstract]   [Full Text] [Related]  

  • 51. SOX5 is involved in balanced MITF regulation in human melanoma cells.
    Kordaß T; Weber CE; Oswald M; Ast V; Bernhardt M; Novak D; Utikal J; Eichmüller SB; König R
    BMC Med Genomics; 2016 Feb; 9():10. PubMed ID: 26927636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cooperative antiproliferative signaling by aspirin and indole-3-carbinol targets microphthalmia-associated transcription factor gene expression and promoter activity in human melanoma cells.
    Poindexter KM; Matthew S; Aronchik I; Firestone GL
    Cell Biol Toxicol; 2016 Apr; 32(2):103-19. PubMed ID: 27055402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. microRNA-155, induced by interleukin-1ß, represses the expression of microphthalmia-associated transcription factor (MITF-M) in melanoma cells.
    Arts N; Cané S; Hennequart M; Lamy J; Bommer G; Van den Eynde B; De Plaen E
    PLoS One; 2015; 10(4):e0122517. PubMed ID: 25853464
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MITF, the Janus transcription factor of melanoma.
    Koludrovic D; Davidson I
    Future Oncol; 2013 Feb; 9(2):235-44. PubMed ID: 23414473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Low expression of microphthalmia-associated transcription factor, a potential molecular target for interferon-alpha susceptibility, is associated with metastasis in renal cell carcinoma.
    Shimazui T; Kojima T; Yoshikawa K; Ami Y; Oikawa T; Uchida K; Akaza H
    Cancer Sci; 2009 Sep; 100(9):1714-8. PubMed ID: 19496784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The WNT/Beta-catenin pathway in melanoma.
    Larue L; Delmas V
    Front Biosci; 2006 Jan; 11():733-42. PubMed ID: 16146765
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential.
    Fritzmann J; Morkel M; Besser D; Budczies J; Kosel F; Brembeck FH; Stein U; Fichtner I; Schlag PM; Birchmeier W
    Gastroenterology; 2009 Jul; 137(1):165-75. PubMed ID: 19328798
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Replacement of related POU transcription factors leads to severe defects in mouse forebrain development.
    Wolf M; Lommes P; Sock E; Reiprich S; Friedrich RP; Kriesch J; Stolt CC; Bermingham JR; Wegner M
    Dev Biol; 2009 Aug; 332(2):418-28. PubMed ID: 19527706
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Ennen M; Keime C; Gambi G; Kieny A; Coassolo S; Thibault-Carpentier C; Margerin-Schaller F; Davidson G; Vagne C; Lipsker D; Davidson I
    Clin Cancer Res; 2017 Nov; 23(22):7097-7107. PubMed ID: 28855355
    [No Abstract]   [Full Text] [Related]  

  • 60. Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway.
    Thurber AE; Douglas G; Sturm EC; Zabierowski SE; Smit DJ; Ramakrishnan SN; Hacker E; Leonard JH; Herlyn M; Sturm RA
    Oncogene; 2011 Jul; 30(27):3036-48. PubMed ID: 21358674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.