BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 18829542)

  • 1. Senescence-associated exosome release from human prostate cancer cells.
    Lehmann BD; Paine MS; Brooks AM; McCubrey JA; Renegar RH; Wang R; Terrian DM
    Cancer Res; 2008 Oct; 68(19):7864-71. PubMed ID: 18829542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence.
    Xin H; Curry J; Johnstone RW; Nickoloff BJ; Choubey D
    Oncogene; 2003 Jul; 22(31):4831-40. PubMed ID: 12894224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells.
    Lehmann BD; McCubrey JA; Jefferson HS; Paine MS; Chappell WH; Terrian DM
    Cell Cycle; 2007 Mar; 6(5):595-605. PubMed ID: 17351335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening.
    Duan J; Duan J; Zhang Z; Tong T
    Int J Biochem Cell Biol; 2005 Jul; 37(7):1407-20. PubMed ID: 15833273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial proteasome inhibition in human fibroblasts triggers accelerated M1 senescence or M2 crisis depending on p53 and Rb status.
    Chondrogianni N; Trougakos IP; Kletsas D; Chen QM; Gonos ES
    Aging Cell; 2008 Oct; 7(5):717-32. PubMed ID: 18691182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiosensitization of prostate cancer by priming the wild-type p53-dependent cellular senescence pathway.
    Lehmann BD; McCubrey JA; Terrian DM
    Cancer Biol Ther; 2007 Aug; 6(8):1165-70. PubMed ID: 18059157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The autocrine human secreted PDZ domain-containing protein 2 (sPDZD2) induces senescence or quiescence of prostate, breast and liver cancer cells via transcriptional activation of p53.
    Tam CW; Liu VW; Leung WY; Yao KM; Shiu SY
    Cancer Lett; 2008 Nov; 271(1):64-80. PubMed ID: 18639375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical telomere shortening regulated by the ataxia-telangiectasia gene acts as a DNA damage signal leading to activation of p53 protein and limited life-span of human diploid fibroblasts. A review.
    Vaziri H
    Biochemistry (Mosc); 1997 Nov; 62(11):1306-10. PubMed ID: 9467855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exosomes and Exosomal MicroRNAs in Prostate Cancer Radiation Therapy.
    Malla B; Zaugg K; Vassella E; Aebersold DM; Dal Pra A
    Int J Radiat Oncol Biol Phys; 2017 Aug; 98(5):982-995. PubMed ID: 28721912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase.
    Vaziri H; West MD; Allsopp RC; Davison TS; Wu YS; Arrowsmith CH; Poirier GG; Benchimol S
    EMBO J; 1997 Oct; 16(19):6018-33. PubMed ID: 9312059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer, aging and cellular senescence.
    Campisi J
    In Vivo; 2000; 14(1):183-8. PubMed ID: 10757076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation.
    Untergasser G; Gander R; Lilg C; Lepperdinger G; Plas E; Berger P
    Mech Ageing Dev; 2005 Jan; 126(1):59-69. PubMed ID: 15610763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition of oxidative DNA damage during senescence: the first step toward carcinogenesis?
    Martien S; Abbadie C
    Ann N Y Acad Sci; 2007 Nov; 1119():51-63. PubMed ID: 18056954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of cyclin-dependent kinase inhibitors in the growth arrest at senescence in human prostate epithelial and uroepithelial cells.
    Schwarze SR; Shi Y; Fu VX; Watson PA; Jarrard DF
    Oncogene; 2001 Dec; 20(57):8184-92. PubMed ID: 11781834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A review of cellular senescence: friend or foe of tumorigenesis?].
    Bischof O; Dejean A; Pineau P
    Med Sci (Paris); 2009 Feb; 25(2):153-60. PubMed ID: 19239847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-induced apoptosis of human prostate cancer cells is independent of mutant p53 overexpression.
    Kyprianou N; Rock S
    Anticancer Res; 1998; 18(2A):897-905. PubMed ID: 9615738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation.
    Scott SL; Earle JD; Gumerlock PH
    Cancer Res; 2003 Nov; 63(21):7190-6. PubMed ID: 14612513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53.
    Fang L; Igarashi M; Leung J; Sugrue MM; Lee SW; Aaronson SA
    Oncogene; 1999 May; 18(18):2789-97. PubMed ID: 10362249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms.
    Bavik C; Coleman I; Dean JP; Knudsen B; Plymate S; Nelson PS
    Cancer Res; 2006 Jan; 66(2):794-802. PubMed ID: 16424011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells.
    Bhatia B; Tang S; Yang P; Doll A; Aumüeller G; Newman RA; Tang DG
    Oncogene; 2005 May; 24(22):3583-95. PubMed ID: 15750631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.