These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices. Hyart T; Mattas J; Alekseev KN Phys Rev Lett; 2009 Sep; 103(11):117401. PubMed ID: 19792399 [TBL] [Abstract][Full Text] [Related]
4. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb. Singh BK; Pandey PC Appl Opt; 2016 Jul; 55(21):5684-92. PubMed ID: 27463924 [TBL] [Abstract][Full Text] [Related]
5. Semiclassical model of stimulated Raman scattering in photonic crystals. Florescu L; Zhang X Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016611. PubMed ID: 16090111 [TBL] [Abstract][Full Text] [Related]
7. On-Demand Design of Tunable Complete Photonic Band Gaps based on Bloch Mode Analysis. Li S; Lin H; Meng F; Moss D; Huang X; Jia B Sci Rep; 2018 Sep; 8(1):14283. PubMed ID: 30250273 [TBL] [Abstract][Full Text] [Related]
8. Design of two-dimensional tunable photonic crystals with multiple functionalities. Wang H; Yang WQ; Ma CB; Lu YF J Nanosci Nanotechnol; 2010 Mar; 10(3):1656-62. PubMed ID: 20355553 [TBL] [Abstract][Full Text] [Related]
9. Optical pulse propagation in nonlinear photonic crystals. Bhat NA; Sipe JE Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056604. PubMed ID: 11736113 [TBL] [Abstract][Full Text] [Related]
10. Method to map individual electromagnetic field components inside a photonic crystal. Denis T; Reijnders B; Lee JH; van der Slot PJ; Vos WL; Boller KJ Opt Express; 2012 Sep; 20(20):22902-13. PubMed ID: 23037440 [TBL] [Abstract][Full Text] [Related]
11. Optical Bloch oscillations of an Airy beam in a photonic lattice with a linear transverse index gradient. Xiao F; Li B; Wang M; Zhu W; Zhang P; Liu S; Premaratne M; Zhao J Opt Express; 2014 Sep; 22(19):22763-70. PubMed ID: 25321745 [TBL] [Abstract][Full Text] [Related]
13. Frequency tunability of solid-core photonic crystal fibers filled with nanoparticle-doped liquid crystals. Scolari L; Gauza S; Xianyu H; Zhai L; Eskildsen L; Alkeskjold TT; Wu ST; Bjarklev A Opt Express; 2009 Mar; 17(5):3754-64. PubMed ID: 19259216 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear Bloch waves in resonantly doped photonic crystals. Kaso A; John S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046611. PubMed ID: 17155196 [TBL] [Abstract][Full Text] [Related]
15. A tunable flat terahertz lens using Dirac semimetals: a simulation study. Panahianfar P; Rezaei B; Darafsheh A Sci Rep; 2024 Mar; 14(1):5191. PubMed ID: 38431742 [TBL] [Abstract][Full Text] [Related]
16. Design and fabrication of two-dimensional photonic crystals with predetermined nonlinear optical properties. Inoue S; Aoyagi Y Phys Rev Lett; 2005 Mar; 94(10):103904. PubMed ID: 15783489 [TBL] [Abstract][Full Text] [Related]
17. Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals. Fang K; Wang Y Phys Rev Lett; 2019 Jun; 122(23):233904. PubMed ID: 31298903 [TBL] [Abstract][Full Text] [Related]
18. Magnetic assembly route to colloidal responsive photonic nanostructures. He L; Wang M; Ge J; Yin Y Acc Chem Res; 2012 Sep; 45(9):1431-40. PubMed ID: 22578015 [TBL] [Abstract][Full Text] [Related]
19. Tunable temperature-dependent THz photonic bandgaps and localization mode engineering in 1D periodic and quasi-periodic structures with graded-index materials and InSb. Singh BK; Pandey PC Appl Opt; 2018 Oct; 57(28):8171-8181. PubMed ID: 30461765 [TBL] [Abstract][Full Text] [Related]