These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18830665)

  • 21. Increased CO2 and the effect of pH on growth and calcification of Pleurochrysis carterae and Emiliania huxleyi (Haptophyta) in semicontinuous cultures.
    Moheimani NR; Borowitzka MA
    Appl Microbiol Biotechnol; 2011 May; 90(4):1399-407. PubMed ID: 21369804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coccolithophore calcification response to past ocean acidification and climate change.
    O'Dea SA; Gibbs SJ; Bown PR; Young JR; Poulton AJ; Newsam C; Wilson PA
    Nat Commun; 2014 Nov; 5():5363. PubMed ID: 25399967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acquisition and use of bicarbonate by Emiliania huxleyi.
    Herfort L; Thake B; Roberts J
    New Phytol; 2002 Dec; 156(3):427-436. PubMed ID: 33873585
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi.
    Sun S; Liu M; Nie X; Dong F; Hu W; Tan D; Huo T
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22446-22454. PubMed ID: 29368204
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain-specific morphological response of the dominant calcifying phytoplankton species Emiliania huxleyi to salinity change.
    Gebühr C; Sheward RM; Herrle JO; Bollmann J
    PLoS One; 2021; 16(2):e0246745. PubMed ID: 33571269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of elevated CO
    Lorenzo MR; Neale PJ; Sobrino C; León P; Vázquez V; Bresnan E; Segovia M
    J Phycol; 2019 Aug; 55(4):775-788. PubMed ID: 31090939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation and mosaicity of coccolith segment calcite of the marine algae Emiliania huxleyi.
    Yin X; Ziegler A; Kelm K; Hoffmann R; Watermeyer P; Alexa P; Villinger C; Rupp U; Schlüter L; Reusch TBH; Griesshaber E; Walther P; Schmahl WW
    J Phycol; 2018 Feb; 54(1):85-104. PubMed ID: 29092105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores.
    Taylor AR; Chrachri A; Wheeler G; Goddard H; Brownlee C
    PLoS Biol; 2011 Jun; 9(6):e1001085. PubMed ID: 21713028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acclimation of Emiliania huxleyi (1516) to nutrient limitation involves precise modification of the proteome to scavenge alternative sources of N and P.
    McKew BA; Metodieva G; Raines CA; Metodiev MV; Geider RJ
    Environ Microbiol; 2015 Oct; 17(10):4050-62. PubMed ID: 26119724
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intraspecific Differences in Biogeochemical Responses to Thermal Change in the Coccolithophore Emiliania huxleyi.
    Matson PG; Ladd TM; Halewood ER; Sangodkar RP; Chmelka BF; Iglesias-Rodriguez MD
    PLoS One; 2016; 11(9):e0162313. PubMed ID: 27584038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coccolithophore Cell Biology: Chalking Up Progress.
    Taylor AR; Brownlee C; Wheeler G
    Ann Rev Mar Sci; 2017 Jan; 9():283-310. PubMed ID: 27814031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coccolithogenesis In Scyphosphaera apsteinii (Prymnesiophyceae).
    Drescher B; Dillaman RM; Taylor AR
    J Phycol; 2012 Dec; 48(6):1343-61. PubMed ID: 27009987
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comment on "Phytoplankton calcification in a high-CO2 world".
    Riebesell U; Bellerby RG; Engel A; Fabry VJ; Hutchins DA; Reusch TB; Schulz KG; Morel FM
    Science; 2008 Dec; 322(5907):1466; author reply 1466. PubMed ID: 19056960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coccolith Sr/Ca is a robust temperature and growth rate indicator that withstands dynamic microbial interactions.
    Eliason O; Segev E
    Geobiology; 2022 May; 20(3):435-443. PubMed ID: 35048494
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coccolithophore calcification: Changing paradigms in changing oceans.
    Brownlee C; Langer G; Wheeler GL
    Acta Biomater; 2021 Jan; 120():4-11. PubMed ID: 32763469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 May; 372():192-204. PubMed ID: 25747776
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative Analysis of Carbon Flow into Photosynthetic Products Functioning as Carbon Storage in the Marine Coccolithophore, Emiliania huxleyi.
    Tsuji Y; Yamazaki M; Suzuki I; Shiraiwa Y
    Mar Biotechnol (NY); 2015 Aug; 17(4):428-40. PubMed ID: 25874681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effect of cytoskeleton inhibitors on coccolith morphology in Coccolithus braarudii and Scyphosphaera apsteinii.
    Langer G; Probert I; Cox MB; Taylor A; Harper GM; Brownlee C; Wheeler G
    J Phycol; 2023 Feb; 59(1):87-96. PubMed ID: 36380706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome variations associated with viral susceptibility and calcification in Emiliania huxleyi.
    Kegel JU; John U; Valentin K; Frickenhaus S
    PLoS One; 2013; 8(11):e80684. PubMed ID: 24260453
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.