BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18830822)

  • 1. A novel reversible pH-triggered release immobilized enzyme system.
    Gai L; Wu D
    Appl Biochem Biotechnol; 2009 Sep; 158(3):747-60. PubMed ID: 18830822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization and bioactivity of glucose oxidase in hydrogel microspheres formulated by an emulsification-internal gelation-adsorption-polyelectrolyte coating method.
    Liu Q; Rauth AM; Wu XY
    Int J Pharm; 2007 Jul; 339(1-2):148-56. PubMed ID: 17398046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres.
    Kim JH; Taluja A; Knutson K; Han Bae Y
    J Control Release; 2005 Dec; 109(1-3):86-100. PubMed ID: 16266769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trypsin immobilization by direct adsorption on metal ion chelated macroporous chitosan-silica gel beads.
    Wu J; Luan M; Zhao J
    Int J Biol Macromol; 2006 Nov; 39(4-5):185-91. PubMed ID: 16712924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immobilization of horseradish peroxidase on modified chitosan beads.
    Monier M; Ayad DM; Wei Y; Sarhan AA
    Int J Biol Macromol; 2010 Apr; 46(3):324-30. PubMed ID: 20060854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.
    Wang Q; Xie X; Zhang X; Zhang J; Wang A
    Int J Biol Macromol; 2010 Apr; 46(3):356-62. PubMed ID: 20096301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The properties of covalently immobilized trypsin on soap-free P(MMA-EA-AA) latex particles.
    Kang K; Kan C; Yeung A; Liu D
    Macromol Biosci; 2005 Apr; 5(4):344-51. PubMed ID: 15818587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-triggered enzyme immobilization and release based on cross-linked gelatin nanoparticles.
    Gan Z; Zhang T; Liu Y; Wu D
    PLoS One; 2012; 7(10):e47154. PubMed ID: 23071741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-structured smart hydrogels with enhanced protein loading and release efficiency.
    Zhang JT; Petersen S; Thunga M; Leipold E; Weidisch R; Liu X; Fahr A; Jandt KD
    Acta Biomater; 2010 Apr; 6(4):1297-306. PubMed ID: 19913647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of glucoamylase onto polyaniline-grafted magnetic hydrogel via adsorption and adsorption/cross-linking.
    Bayramoglu G; Altintas B; Arica MY
    Appl Microbiol Biotechnol; 2013 Feb; 97(3):1149-59. PubMed ID: 22419218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermosensitive-polymer-coated magnetic nanoparticles: adsorption and desorption of bovine serum albumin.
    Shamim N; Hong L; Hidajat K; Uddin MS
    J Colloid Interface Sci; 2006 Dec; 304(1):1-8. PubMed ID: 17010360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and properties of thermoresponsive bioconjugates of trypsin.
    Raghava S; Mondal K; Gupta MN; Pareek P; Kuckling D
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(3):323-36. PubMed ID: 16809133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization.
    Ye P; Xu ZK; Che AF; Wu J; Seta P
    Biomaterials; 2005 Nov; 26(32):6394-403. PubMed ID: 15919112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversible immobilization of uricase on conductive polyaniline brushes grafted on polyacrylonitrile film.
    Bayramoğlu G; Altıntaş B; Arıca MY
    Bioprocess Biosyst Eng; 2011 Feb; 34(2):127-34. PubMed ID: 20652599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of lipase and trypsin encapsulated in mesoporous materials with varying pore sizes and pH conditions.
    Gustafsson H; Thörn C; Holmberg K
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):464-71. PubMed ID: 21733664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of poly(glycidyl methacrylate-divinylbenzene) porous microspheres with polyethylene glycol and their adsorption property of protein.
    Wang R; Zhang Y; Ma G; Su Z
    Colloids Surf B Biointerfaces; 2006 Aug; 51(1):93-9. PubMed ID: 16824738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changing the pH of the external aqueous phase may modulate protein entrapment and delivery from poly(lactide-co-glycolide) microspheres prepared by a w/o/w solvent evaporation method.
    Leo E; Pecquet S; Rojas J; Couvreur P; Fattal E
    J Microencapsul; 1998; 15(4):421-30. PubMed ID: 9651864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres.
    Lei Z; Jiang Q
    J Agric Food Chem; 2011 Mar; 59(6):2592-9. PubMed ID: 21341670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of monodispersed microfloccules of TiO₂ nanoparticles with immobilized multienzymes.
    Wu M; He Q; Shao Q; Zuo Y; Wang F; Ni H
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3300-7. PubMed ID: 21812487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of yeast invertase immobilization onto cupric ion-chelated, porous, and biocompatible poly(hydroxyethyl methacrylate-n-vinyl imidazole) microspheres.
    Sari MM
    Appl Biochem Biotechnol; 2011 Apr; 163(8):1020-37. PubMed ID: 20972892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.