BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18830982)

  • 1. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.
    Li XG; Li A; Huang MR
    Chemistry; 2008; 14(33):10309-17. PubMed ID: 18830982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-stabilized nanoparticles of intrinsically conducting copolymers from 5-sulfonic-2-anisidine.
    Li XG; Lü QF; Huang MR
    Small; 2008 Aug; 4(8):1201-9. PubMed ID: 18666162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis and optimization of conductive copolymer nanoparticles and nanocomposite films from aniline with sulfodiphenylamine.
    Li XG; Lü QF; Huang MR
    Chemistry; 2006 Feb; 12(5):1349-59. PubMed ID: 16294356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of electroconducting narrowly distributed nanoparticles and nanocomposite films of orthanilic acid/aniline copolymers.
    Li XG; Zhang RR; Huang MR
    J Comb Chem; 2006; 8(2):174-83. PubMed ID: 16529512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile optimal synthesis of inherently electroconductive polythiophene nanoparticles.
    Li XG; Li J; Huang MR
    Chemistry; 2009 Jun; 15(26):6446-55. PubMed ID: 19466721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial synthesis and widely controllable conductivity of polythiophene microparticles.
    Li XG; Li J; Meng QK; Huang MR
    J Phys Chem B; 2009 Jul; 113(29):9718-27. PubMed ID: 19552391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Productive synthesis and properties of polydiaminoanthraquinone and its pure self-stabilized nanoparticles with widely adjustable electroconductivity.
    Li XG; Li H; Huang MR
    Chemistry; 2007; 13(31):8884-96. PubMed ID: 17654455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and heavy-metal-ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability.
    Lü QF; Huang MR; Li XG
    Chemistry; 2007; 13(21):6009-18. PubMed ID: 17487909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of polyaniline nano-objects using poly(vinyl alcohol)-, poly(ethylene oxide)-, and poly[(N-vinyl pyrrolidone)-co-(vinyl alcohol)]-based reactive stabilizers.
    Mumtaz M; Labrugère C; Cloutet E; Cramail H
    Langmuir; 2009 Dec; 25(23):13569-80. PubMed ID: 19702249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of polyaniline nanofibers using chloroaurate acid as the oxidant.
    Wang Y; Liu Z; Han B; Sun Z; Huang Y; Yang G
    Langmuir; 2005 Feb; 21(3):833-6. PubMed ID: 15667157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple synthesis of aminoquinoline/ethylaniline copolymer semiconducting nanoparticles.
    Li XG; Hua YM; Huang MR
    Chemistry; 2005 Jul; 11(14):4247-56. PubMed ID: 15880687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenol assisted deaggregation of polyaniline chains: simple route to high quality polyaniline film.
    Wu CG; Chiang CH; Jeng US
    J Phys Chem B; 2008 Jun; 112(22):6772-8. PubMed ID: 18461989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites.
    Cirić-Marjanović G; Dragicević L; Milojević M; Mojović M; Mentus S; Dojcinović B; Marjanović B; Stejskal J
    J Phys Chem B; 2009 May; 113(20):7116-27. PubMed ID: 19402689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple efficient synthesis of strongly luminescent polypyrene with intrinsic conductivity and high carbon yield by chemical oxidative polymerization of pyrene.
    Li XG; Liu YW; Huang MR; Peng S; Gong LZ; Moloney MG
    Chemistry; 2010 Apr; 16(16):4803-13. PubMed ID: 20213778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile synthesis and intrinsic conductivity of novel pyrrole copolymer nanoparticles with inherent self-stability.
    Li XG; Wei F; Huang MR; Xie YB
    J Phys Chem B; 2007 May; 111(21):5829-36. PubMed ID: 17480070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemistry of conductive polymers 36. pH dependence of polyaniline conductivities studied by current-sensing atomic force microscopy.
    Hong SY; Park SM
    J Phys Chem B; 2005 May; 109(19):9305-10. PubMed ID: 16852113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of polymerization conditions of furan with aniline for variable conducting polymers.
    Li XG; Kang Y; Huang MR
    J Comb Chem; 2006; 8(5):670-8. PubMed ID: 16961405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Powerful reactive sorption of silver(I) and mercury(II) onto poly(o-phenylenediamine) microparticles.
    Li XG; Ma XL; Sun J; Huang MR
    Langmuir; 2009 Feb; 25(3):1675-84. PubMed ID: 19132885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics.
    Li Y; Wu Y; Ong BS
    J Am Chem Soc; 2005 Mar; 127(10):3266-7. PubMed ID: 15755129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.