These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18830985)

  • 1. Use of Raman spectroscopy as an in situ tool to obtain kinetic data for organic transformations.
    Schmink JR; Holcomb JL; Leadbeater NE
    Chemistry; 2008; 14(32):9943-50. PubMed ID: 18830985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing the validity of microwave-interfaced, in situ Raman spectroscopy as a tool for kinetic studies.
    Schmink JR; Holcomb JL; Leadbeater NE
    Org Lett; 2009 Jan; 11(2):365-8. PubMed ID: 19072323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Raman spectroscopy as a tool for in situ monitoring of microwave-promoted reactions.
    Leadbeater NE; Schmink JR
    Nat Protoc; 2008; 3(1):1-7. PubMed ID: 18193016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism.
    Pérez-Maqueda LA; Criado JM; Sanchez-Jiménez PE
    J Phys Chem A; 2006 Nov; 110(45):12456-62. PubMed ID: 17091950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined online spectroscopic, calorimetric, and chemometric analysis: reaction enthalpy determinations in single and parallel reactions.
    Tjahjono M; Widjaja E; Garland M
    Chemphyschem; 2009 Jun; 10(8):1274-83. PubMed ID: 19360799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing "microwave effects" using Raman spectroscopy.
    Schmink JR; Leadbeater NE
    Org Biomol Chem; 2009 Sep; 7(18):3842-6. PubMed ID: 19707691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Newman-Kwart rearrangement: a microwave kinetic study.
    Gilday JP; Lenden P; Moseley JD; Cox BG
    J Org Chem; 2008 Apr; 73(8):3130-4. PubMed ID: 18358042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using in situ Raman monitoring as a tool for rapid optimisation and scale-up of microwave-promoted organic synthesis: esterification as an example.
    Leadbeater NE; Smith RJ; Barnard TM
    Org Biomol Chem; 2007 Mar; 5(5):822-5. PubMed ID: 17315069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicon carbide passive heating elements in microwave-assisted organic synthesis.
    Kremsner JM; Kappe CO
    J Org Chem; 2006 Jun; 71(12):4651-8. PubMed ID: 16749800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ reaction monitoring of microwave-mediated reactions using IR spectroscopy.
    Leadbeater NE
    Chem Commun (Camb); 2010 Sep; 46(36):6693-5. PubMed ID: 20717594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time Monitoring of Reactions Performed Using Continuous-flow Processing: The Preparation of 3-Acetylcoumarin as an Example.
    Hamlin TA; Leadbeater NE
    J Vis Exp; 2015 Nov; (105):. PubMed ID: 26650190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG; Carmona JA; Alfonso JE; Alcaide LJ
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol.
    Bilecka I; Elser P; Niederberger M
    ACS Nano; 2009 Feb; 3(2):467-77. PubMed ID: 19236087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions.
    de Cózar A; Millán MC; Cebrián C; Prieto P; Díaz-Ortiz A; de la Hoz A; Cossío FP
    Org Biomol Chem; 2010 Mar; 8(5):1000-9. PubMed ID: 20165789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calibration-free quantitative application of in situ Raman spectroscopy to a crystallization process.
    Cornel J; Mazzotti M
    Anal Chem; 2008 Dec; 80(23):9240-9. PubMed ID: 19551944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetric kinetics of protein structural changes.
    Marchal S; Font J; Ribó M; Vilanova M; Phillips RS; Lange R; Torrent J
    Acc Chem Res; 2009 Jun; 42(6):778-87. PubMed ID: 19378977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. "In silico" mechanistic studies as predictive tools in microwave-assisted organic synthesis.
    Rodriguez AM; Prieto P; de la Hoz A; Díaz-Ortiz A
    Org Biomol Chem; 2011 Apr; 9(7):2371-7. PubMed ID: 21321770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acetone reactions over the surfaces of polycrystalline UO2: a kinetic and spectroscopic study.
    King R; Idriss H
    Langmuir; 2009 Apr; 25(8):4543-55. PubMed ID: 19366223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of microwave-promoted Suzuki coupling reactions using in situ Raman spectroscopy.
    Leadbeater NE; Smith RJ
    Org Lett; 2006 Sep; 8(20):4589-91. PubMed ID: 16986957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.