BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 18831003)

  • 1. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels.
    Nicodemus GD; Shiplet KA; Kaltz SR; Bryant SJ
    Biotechnol Bioeng; 2009 Feb; 102(3):948-59. PubMed ID: 18831003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach.
    Schneider MC; Lalitha Sridhar S; Vernerey FJ; Bryant SJ
    J Mater Chem B; 2020 Apr; 8(14):2775-2791. PubMed ID: 32155233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro.
    Sokic S; Papavasiliou G
    Tissue Eng Part A; 2012 Dec; 18(23-24):2477-86. PubMed ID: 22725267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of protein release from hydrolytically degradable poly(ethylene glycol) hydrogels.
    Zustiak SP; Leach JB
    Biotechnol Bioeng; 2011 Jan; 108(1):197-206. PubMed ID: 20803477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of cellularly responsive hydrogels and their experimental determination.
    Kloxin AM; Kloxin CJ; Bowman CN; Anseth KS
    Adv Mater; 2010 Aug; 22(31):3484-94. PubMed ID: 20473984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stop-flow lithography for the production of shape-evolving degradable microgel particles.
    Hwang DK; Oakey J; Toner M; Arthur JA; Anseth KS; Lee S; Zeiger A; Van Vliet KJ; Doyle PS
    J Am Chem Soc; 2009 Apr; 131(12):4499-504. PubMed ID: 19215127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels.
    Sokic S; Papavasiliou G
    Acta Biomater; 2012 Jul; 8(6):2213-22. PubMed ID: 22426138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelation characteristics, physico-mechanical properties and degradation kinetics of micellar hydrogels.
    Moeinzadeh S; Jabbari E
    Eur Polym J; 2015 Nov; 72():566-576. PubMed ID: 26688592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioorthogonally cross-linked hydrogel network with precisely controlled disintegration time over a broad range.
    Xu J; Feng E; Song J
    J Am Chem Soc; 2014 Mar; 136(11):4105-8. PubMed ID: 24597638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The consolidation behavior of silk hydrogels.
    Kluge JA; Rosiello NC; Leisk GG; Kaplan DL; Dorfmann AL
    J Mech Behav Biomed Mater; 2010 Apr; 3(3):278-89. PubMed ID: 20142112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vitro tissue model for screening sustained release of phosphate-based therapeutic attenuation of pathogen-induced proteolytic matrix degradation.
    Pimentel MB; Borges FTP; Teymour F; Zaborina OY; Alverdy JC; Fang K; Hong SH; Staneviciute A; He YJ; Papavasiliou G
    J Mater Chem B; 2020 Mar; 8(12):2454-2465. PubMed ID: 32108210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Tough Hydrogel Cross-Linked via Ionic Interaction by Protection Effect of Hydrophobic Domains.
    Bunuasunthon S; Nakamoto M; Hoven VP; Matsusaki M
    ACS Biomater Sci Eng; 2024 Jun; ():. PubMed ID: 38865608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocomposites of pHEMA with HA/β -TCP (60/40) for bone tissue engineering: Swelling, hydrolytic degradation, and
    Huang J; Ten E; Liu G; Finzen M; Yu W; Lee JS; Saiz E; Tomsia AP
    Polymer (Guildf); 2013 Feb; 54(3):1197-1207. PubMed ID: 23525522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction.
    Fairbanks BD; Singh SP; Bowman CN; Anseth KS
    Macromolecules; 2011 Apr; 44(8):2444-2450. PubMed ID: 21512614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Helix
    Oelker AM; Morey SM; Griffith LG; Hammond PT
    Soft Matter; 2012 Nov; 42(8):10887-10895. PubMed ID: 24575148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling Degradation of Hydrogels via the Size of Cross-Linked Junctions.
    Kong HJ; Alsberg E; Kaigler D; Lee KY; Mooney DJ
    Adv Mater; 2004 Nov; 16(21):1917-1921. PubMed ID: 25067887
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydrogel Delivery Device for the In Vitro and In Vivo Sustained Release of Active rhGALNS Enzyme.
    Flanagan M; Gan Q; Sheth S; Schafer R; Ruesing S; Winter LE; Toth K; Zustiak SP; Montaño AM
    Pharmaceuticals (Basel); 2023 Jun; 16(7):. PubMed ID: 37513843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-Matrix Composites: Characterising the Impact of Environmental Factors on Their Lifetime.
    Barreira-Pinto R; Carneiro R; Miranda M; Guedes RM
    Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of dynamic compressive loading on human mesenchymal stem cell osteogenesis in the stiff layer of a bilayer hydrogel.
    Aziz AH; Eckstein K; Ferguson VL; Bryant SJ
    J Tissue Eng Regen Med; 2019 Jun; 13(6):946-959. PubMed ID: 30793536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Crimping and Expanding Performance of Self-Expanding Polymeric Bioresorbable Stents: Experimental and Computational Investigation.
    Zhao F; Liu L; Yang Y; Wang F; Wang L
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30400381
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.