BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 18831175)

  • 1. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.
    Vadeboncoeur Y; Peterson G; Vander Zanden MJ; Kalff J
    Ecology; 2008 Sep; 89(9):2542-52. PubMed ID: 18831175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.
    Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ
    Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periphyton function in lake ecosystems.
    Vadeboncoeur Y; Steinman AD
    ScientificWorldJournal; 2002 May; 2():1449-68. PubMed ID: 12805932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-up and top-down effects of browning and warming on shallow lake food webs.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of littoral periphyton on whole-lake metabolism relates to littoral vegetation in humic lakes.
    Vesterinen J; Devlin SP; Syväranta J; Jones RI
    Ecology; 2017 Dec; 98(12):3074-3085. PubMed ID: 28888038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes.
    Ask J; Karlsson J; Persson L; Ask P; Byström P; Jansson M
    Ecology; 2009 Jul; 90(7):1923-32. PubMed ID: 19694140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benthic algae compensate for phytoplankton losses in large aquatic ecosystems.
    Brothers S; Vadeboncoeur Y; Sibley P
    Glob Chang Biol; 2016 Dec; 22(12):3865-3873. PubMed ID: 27029572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benthic-planktonic coupling, regime shifts, and whole-lake primary production in shallow lakes.
    Genkai-Kato M; Vadeboncoeur Y; Liboriussen L; Jeppesen E
    Ecology; 2012 Mar; 93(3):619-31. PubMed ID: 22624216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light limitation of nutrient-poor lake ecosystems.
    Karlsson J; Byström P; Ask J; Ask P; Persson L; Jansson M
    Nature; 2009 Jul; 460(7254):506-9. PubMed ID: 19626113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased benthic algal primary production in response to the invasive zebra mussel (Dreissena polymorpha) in a productive ecosystem, Oneida Lake, New York.
    Cecala RK; Mayer CM; Schulz KL; Mills EL
    J Integr Plant Biol; 2008 Nov; 50(11):1452-66. PubMed ID: 19017132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth-Related Effects on a Meiofaunal Community Dwelling in the Periphyton of a Mesotrophic Lake.
    Kreuzinger-Janik B; Schroeder F; Majdi N; Traunspurger W
    PLoS One; 2015; 10(9):e0137793. PubMed ID: 26353016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole-lake experiments reveal the fate of terrestrial particulate organic carbon in benthic food webs of shallow lakes.
    Scharnweber K; Syväranta J; Hilt S; Brauns M; Vanni MJ; Brothers S; Köhler J; Knezević-Jarić J; Mehner T
    Ecology; 2014 Jun; 95(6):1496-505. PubMed ID: 25039215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Terrestrial, benthic, and pelagic resource use in lakes: results from a three-isotope Bayesian mixing model.
    Solomon CT; Carpenter SR; Clayton MK; Cole JJ; Coloso JJ; Pace ML; Zanden MJ; Weidel BC
    Ecology; 2011 May; 92(5):1115-25. PubMed ID: 21661572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetrical competition between aquatic primary producers in a warmer and browner world.
    Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P
    Ecology; 2016 Oct; 97(10):2580-2592. PubMed ID: 27859128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns in benthic biodiversity link lake trophic status to structure and potential function of three large, deep lakes.
    Hayford BL; Caires AM; Chandra S; Girdner SF
    PLoS One; 2015; 10(1):e0117024. PubMed ID: 25594516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus Availability Alters the Effects of Silver Nanoparticles on Periphyton Growth and Stoichiometry.
    Norman BC; Xenopoulos MA; Braun D; Frost PC
    PLoS One; 2015; 10(6):e0129328. PubMed ID: 26075715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relative strengths of benthic algal nutrient and grazer limitation along a lake productivity gradient.
    Darcy-Hall TL
    Oecologia; 2006 Jul; 148(4):660-71. PubMed ID: 16555091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model study on the role of wetland zones in lake eutrophication and restoration.
    Janse JH; Ligtvoet W; Van Tol S; Bresser AH
    ScientificWorldJournal; 2001 Nov; 1 Suppl 2():605-14. PubMed ID: 12805815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nutrient cycling by fish supports relatively more primary production as lake productivity increases.
    Vanni MJ; Bowling AM; Dickman EM; Hale RS; Higgins KA; Horgan MJ; Knoll LB; Renwick WH; Stein RA
    Ecology; 2006 Jul; 87(7):1696-709. PubMed ID: 16922320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes.
    Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI
    Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.