These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 18831777)

  • 1. Approaches to reduce false positives and false negatives in the analysis of microarray data: applications in type 1 diabetes research.
    Wu J; Lenchik NI; Gerling IC
    BMC Genomics; 2008 Sep; 9 Suppl 2(Suppl 2):S12. PubMed ID: 18831777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New data analysis and mining approaches identify unique proteome and transcriptome markers of susceptibility to autoimmune diabetes.
    Gerling IC; Singh S; Lenchik NI; Marshall DR; Wu J
    Mol Cell Proteomics; 2006 Feb; 5(2):293-305. PubMed ID: 16227630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical methods for ranking differentially expressed genes.
    Broberg P
    Genome Biol; 2003; 4(6):R41. PubMed ID: 12801415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data.
    Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S
    BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex genes for genomic analysis in human brain: internal controls for comparison of probe level data extraction.
    Galfalvy HC; Erraji-Benchekroun L; Smyrniotopoulos P; Pavlidis P; Ellis SP; Mann JJ; Sibille E; Arango V
    BMC Bioinformatics; 2003 Sep; 4():37. PubMed ID: 12962547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. False discovery rate, sensitivity and sample size for microarray studies.
    Pawitan Y; Michiels S; Koscielny S; Gusnanto A; Ploner A
    Bioinformatics; 2005 Jul; 21(13):3017-24. PubMed ID: 15840707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadratic regression analysis for gene discovery and pattern recognition for non-cyclic short time-course microarray experiments.
    Liu H; Tarima S; Borders AS; Getchell TV; Getchell ML; Stromberg AJ
    BMC Bioinformatics; 2005 Apr; 6():106. PubMed ID: 15850479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic learning of gene functional classes from DNA array expression data by using multilayer perceptrons.
    Mateos A; Dopazo J; Jansen R; Tu Y; Gerstein M; Stolovitzky G
    Genome Res; 2002 Nov; 12(11):1703-15. PubMed ID: 12421757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidimensional local false discovery rate for microarray studies.
    Ploner A; Calza S; Gusnanto A; Pawitan Y
    Bioinformatics; 2006 Mar; 22(5):556-65. PubMed ID: 16368770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sample size for detecting differentially expressed genes in microarray experiments.
    Wei C; Li J; Bumgarner RE
    BMC Genomics; 2004 Nov; 5():87. PubMed ID: 15533245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the occurrence of false positives and false negatives in microarray studies by approximating and partitioning the empirical distribution of p-values.
    Pounds S; Morris SW
    Bioinformatics; 2003 Jul; 19(10):1236-42. PubMed ID: 12835267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance testing for small microarray experiments.
    Kooperberg C; Aragaki A; Strand AD; Olson JM
    Stat Med; 2005 Aug; 24(15):2281-98. PubMed ID: 15889452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene expression and isoform variation analysis using Affymetrix Exon Arrays.
    Bemmo A; Benovoy D; Kwan T; Gaffney DJ; Jensen RV; Majewski J
    BMC Genomics; 2008 Nov; 9():529. PubMed ID: 18990248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data.
    Jain N; Cho H; O'Connell M; Lee JK
    BMC Bioinformatics; 2005 Jul; 6():187. PubMed ID: 16042779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel statistical framework to identify differentially expressed genes allowing transcriptomic background differences.
    Ling ZQ; Wang Y; Mukaisho K; Hattori T; Tatsuta T; Ge MH; Jin L; Mao WM; Sugihara H
    Bioinformatics; 2010 Jun; 26(11):1431-6. PubMed ID: 20400756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Practical FDR-based sample size calculations in microarray experiments.
    Hu J; Zou F; Wright FA
    Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
    Gao X
    Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA microarray data imputation and significance analysis of differential expression.
    Jörnsten R; Wang HY; Welsh WJ; Ouyang M
    Bioinformatics; 2005 Nov; 21(22):4155-61. PubMed ID: 16118262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.
    Wu J; Kakoola DN; Lenchik NI; Desiderio DM; Marshall DR; Gerling IC
    PLoS One; 2012; 7(10):e46941. PubMed ID: 23071669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harnessing the power of gene microarrays for the study of brain aging and Alzheimer's disease: statistical reliability and functional correlation.
    Blalock EM; Chen KC; Stromberg AJ; Norris CM; Kadish I; Kraner SD; Porter NM; Landfield PW
    Ageing Res Rev; 2005 Nov; 4(4):481-512. PubMed ID: 16257272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.