These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 18832426)

  • 1. A limited contribution of Ca2+ current facilitation to paired-pulse facilitation of transmitter release at the rat calyx of Held.
    Müller M; Felmy F; Schneggenburger R
    J Physiol; 2008 Nov; 586(22):5503-20. PubMed ID: 18832426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem.
    Cuttle MF; Tsujimoto T; Forsythe ID; Takahashi T
    J Physiol; 1998 Nov; 512 ( Pt 3)(Pt 3):723-9. PubMed ID: 9769416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential.
    Felmy F; Neher E; Schneggenburger R
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15200-5. PubMed ID: 14630950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem.
    Borst JG; Sakmann B
    Philos Trans R Soc Lond B Biol Sci; 1999 Feb; 354(1381):347-55. PubMed ID: 10212483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction between facilitation and depression at a large CNS synapse reveals mechanisms of short-term plasticity.
    Müller M; Goutman JD; Kochubey O; Schneggenburger R
    J Neurosci; 2010 Feb; 30(6):2007-16. PubMed ID: 20147529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic facilitation at the crayfish neuromuscular junction. Role of calcium-activated potassium conductance.
    Sivaramakrishnan S; Brodwick MS; Bittner GD
    J Gen Physiol; 1991 Dec; 98(6):1181-96. PubMed ID: 1783897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation.
    Felmy F; Neher E; Schneggenburger R
    Neuron; 2003 Mar; 37(5):801-11. PubMed ID: 12628170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of volume-averaged intracellular Ca
    Lin KH; Taschenberger H; Neher E
    J Physiol; 2017 May; 595(10):3219-3236. PubMed ID: 27957749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular calcium dependence of transmitter release rates at a fast central synapse.
    Schneggenburger R; Neher E
    Nature; 2000 Aug; 406(6798):889-93. PubMed ID: 10972290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative relationship between transmitter release and calcium current at the calyx of held synapse.
    Sakaba T; Neher E
    J Neurosci; 2001 Jan; 21(2):462-76. PubMed ID: 11160426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of presynaptic calcium currents in the rat brainstem.
    Borst JG; Sakmann B
    J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):149-55. PubMed ID: 9782166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held.
    Kochubey O; Han Y; Schneggenburger R
    J Physiol; 2009 Jun; 587(Pt 12):3009-23. PubMed ID: 19403608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can presynaptic depolarization release transmitter without calcium influx?
    Zucker RS; Landò L; Fogelson A
    J Physiol (Paris); 1986; 81(4):237-45. PubMed ID: 2883310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms underlying short-term modulation of transmitter release by presynaptic depolarization.
    Hori T; Takahashi T
    J Physiol; 2009 Jun; 587(Pt 12):2987-3000. PubMed ID: 19403620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium currents, transmitter release and facilitation of release at voltage-clamped crayfish nerve terminals.
    Wright SN; Brodwick MS; Bittner GD
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):363-78. PubMed ID: 8910222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of synaptic strength and timing by the release-site Ca2+ signal.
    Bollmann JH; Sakmann B
    Nat Neurosci; 2005 Apr; 8(4):426-34. PubMed ID: 15750590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in synaptic transmission properties due to the expression of N-type calcium channels at the calyx of Held synapse of mice lacking P/Q-type calcium channels.
    Inchauspe CG; Forsythe ID; Uchitel OD
    J Physiol; 2007 Nov; 584(Pt 3):835-51. PubMed ID: 17823210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of Held that accelerates the decay of Ca2+ and short-term facilitation.
    Müller M; Felmy F; Schwaller B; Schneggenburger R
    J Neurosci; 2007 Feb; 27(9):2261-71. PubMed ID: 17329423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium and transmitter release.
    Zucker RS
    J Physiol Paris; 1993; 87(1):25-36. PubMed ID: 7905762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium channel types with distinct presynaptic localization couple differentially to transmitter release in single calyx-type synapses.
    Wu LG; Westenbroek RE; Borst JG; Catterall WA; Sakmann B
    J Neurosci; 1999 Jan; 19(2):726-36. PubMed ID: 9880593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.