These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
875 related articles for article (PubMed ID: 18832860)
1. Differential frontal activation during exogenous and endogenous orientation of visuospatial attention. A near-infrared spectroscopy study. Takahashi M; Ikegami M Neuropsychobiology; 2008; 58(2):55-64. PubMed ID: 18832860 [TBL] [Abstract][Full Text] [Related]
2. Interactions between voluntary and stimulus-driven spatial attention mechanisms across sensory modalities. Santangelo V; Olivetti Belardinelli M; Spence C; Macaluso E J Cogn Neurosci; 2009 Dec; 21(12):2384-97. PubMed ID: 19199406 [TBL] [Abstract][Full Text] [Related]
3. Neural networks of response shifting: influence of task speed and stimulus material. Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867 [TBL] [Abstract][Full Text] [Related]
4. Transcranial magnetic stimulation of the parietal cortex facilitates spatial working memory: near-infrared spectroscopy study. Yamanaka K; Yamagata B; Tomioka H; Kawasaki S; Mimura M Cereb Cortex; 2010 May; 20(5):1037-45. PubMed ID: 19684247 [TBL] [Abstract][Full Text] [Related]
5. Right prefrontal brain activation due to Stroop interference is altered in attention-deficit hyperactivity disorder - A functional near-infrared spectroscopy study. Jourdan Moser S; Cutini S; Weber P; Schroeter ML Psychiatry Res; 2009 Sep; 173(3):190-5. PubMed ID: 19664910 [TBL] [Abstract][Full Text] [Related]
6. Activation of the prefrontal cortex in working memory and interference resolution processes assessed with near-infrared spectroscopy. Schreppel T; Egetemeir J; Schecklmann M; Plichta MM; Pauli P; Ellgring H; Fallgatter AJ; Herrmann MJ Neuropsychobiology; 2008; 57(4):188-93. PubMed ID: 18654088 [TBL] [Abstract][Full Text] [Related]
7. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Doricchi F; Macci E; Silvetti M; Macaluso E Cereb Cortex; 2010 Jul; 20(7):1574-85. PubMed ID: 19846472 [TBL] [Abstract][Full Text] [Related]
8. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Sandrini M; Rossini PM; Miniussi C Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847 [TBL] [Abstract][Full Text] [Related]
9. The orienting of visuospatial attention: an event-related brain potential study. Talsma D; Slagter HA; Nieuwenhuis S; Hage J; Kok A Brain Res Cogn Brain Res; 2005 Sep; 25(1):117-29. PubMed ID: 15925498 [TBL] [Abstract][Full Text] [Related]
11. Relation between asymmetry of prefrontal cortex activities and the autonomic nervous system during a mental arithmetic task: near infrared spectroscopy study. Tanida M; Sakatani K; Takano R; Tagai K Neurosci Lett; 2004 Oct; 369(1):69-74. PubMed ID: 15380310 [TBL] [Abstract][Full Text] [Related]
12. The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. León-Carrion J; Damas-López J; Martín-Rodríguez JF; Domínguez-Roldán JM; Murillo-Cabezas F; Barroso Y Martin JM; Domínguez-Morales MR Behav Brain Res; 2008 Nov; 193(2):248-56. PubMed ID: 18606191 [TBL] [Abstract][Full Text] [Related]
13. Spatio-temporal dynamics of visual selective attention identified by a common spatial pattern decomposition method. Li L; Yao D; Yin G Brain Res; 2009 Jul; 1282():84-94. PubMed ID: 19501069 [TBL] [Abstract][Full Text] [Related]
14. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Thiel CM; Fink GR Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290 [TBL] [Abstract][Full Text] [Related]
15. A different outlook on time: visual and auditory month names elicit different mental vantage points for a time-space synaesthete. Jarick M; Dixon MJ; Stewart MT; Maxwell EC; Smilek D Cortex; 2009; 45(10):1217-28. PubMed ID: 19665700 [TBL] [Abstract][Full Text] [Related]
16. ERP and fMRI correlates of endogenous and exogenous focusing of visual-spatial attention. Natale E; Marzi CA; Girelli M; Pavone EF; Pollmann S Eur J Neurosci; 2006 May; 23(9):2511-21. PubMed ID: 16706858 [TBL] [Abstract][Full Text] [Related]
17. Alterations in prefrontal cortical activity in the course of treatment for late-life depression as assessed on near-infrared spectroscopy. Onishi Y; Kikuchi S; Watanabe E; Kato S Psychiatry Clin Neurosci; 2008 Apr; 62(2):177-84. PubMed ID: 18412840 [TBL] [Abstract][Full Text] [Related]
18. Transient and sustained brain activity during anticipatory visuospatial attention. Luks TL; Sun FT; Dale CL; Miller WL; Simpson GV Neuroreport; 2008 Jan; 19(2):155-9. PubMed ID: 18185100 [TBL] [Abstract][Full Text] [Related]
19. What is "odd" in Posner's location-cueing paradigm? Neural responses to unexpected location and feature changes compared. Vossel S; Weidner R; Thiel CM; Fink GR J Cogn Neurosci; 2009 Jan; 21(1):30-41. PubMed ID: 18476756 [TBL] [Abstract][Full Text] [Related]
20. Attentional and sensory effects of lowered levels of intrinsic alertness. Matthias E; Bublak P; Costa A; Müller HJ; Schneider WX; Finke K Neuropsychologia; 2009 Dec; 47(14):3255-64. PubMed ID: 19682470 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]