BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

736 related articles for article (PubMed ID: 18832971)

  • 1. Thickness mapping of the cornea and epithelium using optical coherence tomography.
    Haque S; Jones L; Simpson T
    Optom Vis Sci; 2008 Oct; 85(10):E963-76. PubMed ID: 18832971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central and peripheral corneal thickness measured with optical coherence tomography, Scheimpflug imaging, and ultrasound pachymetry in normal, keratoconus-suspect, and post-laser in situ keratomileusis eyes.
    Prospero Ponce CM; Rocha KM; Smith SD; Krueger RR
    J Cataract Refract Surg; 2009 Jun; 35(6):1055-62. PubMed ID: 19465292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal refractive therapy with different lens materials, part 1: corneal, stromal, and epithelial thickness changes.
    Haque S; Fonn D; Simpson T; Jones L
    Optom Vis Sci; 2007 Apr; 84(4):343-8. PubMed ID: 17435518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of corneal thickness of long-term contact lens wearers for different types of contact lenses.
    Iskeleli G; Onur U; Ustundag C; Ozkan S
    Eye Contact Lens; 2006 Sep; 32(5):219-22. PubMed ID: 16974153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal, limbal, and conjunctival epithelial thickness from optical coherence tomography.
    Feng Y; Simpson TL
    Optom Vis Sci; 2008 Sep; 85(9):E880-3. PubMed ID: 18772715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unilateral keratoconus: videokeratography and Orbscan study--optical correction.
    Lema I; Suárez AI; Díez-Feijoo E
    Eye Contact Lens; 2009 Jan; 35(1):15-9. PubMed ID: 19125043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring of corneal thickness of contact lens wearers with keratoconus and keratoplasty by means of optical coherence tomography (OCT).
    Pöltner G; Miller K; Berke A; Sickenberger W
    Coll Antropol; 2013 Apr; 37 Suppl 1():165-73. PubMed ID: 23837239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The repeatability of corneal and corneal epithelial thickness measurements using optical coherence tomography.
    Sin S; Simpson TL
    Optom Vis Sci; 2006 Jun; 83(6):360-5. PubMed ID: 16772894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Menicon Z rigid gas permeable lenses for keratoconus and irregular corneas: a retrospective case series.
    Szczotka-Flynn LB; Patel S
    Eye Contact Lens; 2008 Sep; 34(5):254-60. PubMed ID: 18779664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of corneal microstructure in keratoconus utilising in vivo confocal microscopy.
    Weed KH; MacEwen CJ; Cox A; McGhee CN
    Eye (Lond); 2007 May; 21(5):614-23. PubMed ID: 16498438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement.
    Kim JH; Lee D; Rhee KI
    J Cataract Refract Surg; 2008 Jan; 34(1):132-6. PubMed ID: 18165093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial thickness changes from the induction of myopia with CRTH RGP contact lenses.
    Haque S; Fonn D; Simpson T; Jones L
    Invest Ophthalmol Vis Sci; 2008 Aug; 49(8):3345-50. PubMed ID: 18421075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the thinnest point of the cornea compared with the central corneal thickness in normal subjects.
    Rüfer F; Sander S; Klettner A; Frimpong-Boateng A; Erb C
    Cornea; 2009 Feb; 28(2):177-80. PubMed ID: 19158561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertical and horizontal thickness profiles of the corneal epithelium and Bowman's layer after orthokeratology.
    Lian Y; Shen M; Jiang J; Mao X; Lu P; Zhu D; Chen Q; Wang J; Lu F
    Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):691-6. PubMed ID: 23221070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Malleability of the ocular surface in response to mechanical stress induced by orthokeratology contact lenses.
    Lu F; Simpson T; Sorbara L; Fonn D
    Cornea; 2008 Feb; 27(2):133-41. PubMed ID: 18216565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo confocal microscopy and anterior segment optical coherence tomography analysis of the cornea in nephropathic cystinosis.
    Labbé A; Niaudet P; Loirat C; Charbit M; Guest G; Baudouin C
    Ophthalmology; 2009 May; 116(5):870-6. PubMed ID: 19410944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Corneal epithelial thickness mapping using Fourier-domain optical coherence tomography for detection of form fruste keratoconus.
    Temstet C; Sandali O; Bouheraoua N; Hamiche T; Galan A; El Sanharawi M; Basli E; Laroche L; Borderie V
    J Cataract Refract Surg; 2015 Apr; 41(4):812-20. PubMed ID: 25840306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal microscopy in vivo in corneas of long-term contact lens wearers.
    Patel SV; McLaren JW; Hodge DO; Bourne WM
    Invest Ophthalmol Vis Sci; 2002 Apr; 43(4):995-1003. PubMed ID: 11923239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of rigid gas-permeable contact lens on keratometric indices and corneal thickness of keratoconus eyes examined with anterior segment optical coherence tomography.
    Akiyama K; Ono T; Ishii H; Chen LW; Kitamoto K; Toyono T; Yoshida J; Aihara M; Miyai T
    PLoS One; 2022; 17(7):e0270519. PubMed ID: 35802557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Objective measurements of corneal light-backscatter during corneal swelling, by optical coherence tomography.
    Wang J; Simpson TL; Fonn D
    Invest Ophthalmol Vis Sci; 2004 Oct; 45(10):3493-8. PubMed ID: 15452054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.