These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

674 related articles for article (PubMed ID: 18833291)

  • 1. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional restraints on the patterns of amino acid substitutions: application to sequence-structure homology recognition.
    Chelliah V; Blundell T; Mizuguchi K
    Proteins; 2005 Dec; 61(4):722-31. PubMed ID: 16193489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinguishing structural and functional restraints in evolution in order to identify interaction sites.
    Chelliah V; Chen L; Blundell TL; Lovell SC
    J Mol Biol; 2004 Oct; 342(5):1487-504. PubMed ID: 15364576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural and functional restraints in the evolution of protein families and superfamilies.
    Gong S; Worth CL; Bickerton GR; Lee S; Tanramluk D; Blundell TL
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):727-33. PubMed ID: 19614584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in structural location and amino acid conservation of functional sites in protein domain families.
    Pils B; Copley RR; Schultz J
    BMC Bioinformatics; 2005 Aug; 6():210. PubMed ID: 16122386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of deleterious functional effects of amino acid mutations using a library of structure-based function descriptors.
    Herrgard S; Cammer SA; Hoffman BT; Knutson S; Gallina M; Speir JA; Fetrow JS; Baxter SM
    Proteins; 2003 Dec; 53(4):806-16. PubMed ID: 14635123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties.
    Shi J; Blundell TL; Mizuguchi K
    J Mol Biol; 2001 Jun; 310(1):243-57. PubMed ID: 11419950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient restraints for protein-protein docking by comparison of observed amino acid substitution patterns with those predicted from local environment.
    Chelliah V; Blundell TL; Fernández-Recio J
    J Mol Biol; 2006 Apr; 357(5):1669-82. PubMed ID: 16488431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network analysis of protein structures identifies functional residues.
    Amitai G; Shemesh A; Sitbon E; Shklar M; Netanely D; Venger I; Pietrokovski S
    J Mol Biol; 2004 Dec; 344(4):1135-46. PubMed ID: 15544817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of functional sites by analysis of sequence and structure conservation.
    Panchenko AR; Kondrashov F; Bryant S
    Protein Sci; 2004 Apr; 13(4):884-92. PubMed ID: 15010543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. I. Solvent accessibility classes.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):682-92. PubMed ID: 8182743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between functional subclasses and information contained in active-site and ligand-binding residues in diverse superfamilies.
    Nagao C; Nagano N; Mizuguchi K
    Proteins; 2010 Aug; 78(10):2369-84. PubMed ID: 20544971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting sequence and structure homologs to identify protein-protein binding sites.
    Chung JL; Wang W; Bourne PE
    Proteins; 2006 Mar; 62(3):630-40. PubMed ID: 16329107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and structure conservation in a protein core.
    Rodionov MA; Blundell TL
    Proteins; 1998 Nov; 33(3):358-66. PubMed ID: 9829695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotachy and functional shift in protein evolution.
    Philippe H; Casane D; Gribaldo S; Lopez P; Meunier J
    IUBMB Life; 2003; 55(4-5):257-65. PubMed ID: 12880207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein side-chain rearrangement in regions of point mutations.
    Eyal E; Najmanovich R; Edelman M; Sobolev V
    Proteins; 2003 Feb; 50(2):272-82. PubMed ID: 12486721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational analysis of long spacers in PROSITE patterns.
    Lin KY; Wright J; Lim C
    J Mol Biol; 2000 Jun; 299(2):537-48. PubMed ID: 10860757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural features and evolution of protein-protein interactions.
    Von Eichborn J; Günther S; Preissner R
    Genome Inform; 2010 Jan; 22():1-10. PubMed ID: 20238414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.