These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 18834115)
21. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography. Liu X; Wang Q; Qin J; Lin B Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237 [TBL] [Abstract][Full Text] [Related]
22. Facile single step fabrication of microchannels with varying size. Asthana A; Kim KO; Perumal J; Kim DM; Kim DP Lab Chip; 2009 Apr; 9(8):1138-42. PubMed ID: 19350097 [TBL] [Abstract][Full Text] [Related]
23. Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Evander M; Johansson L; Lilliehorn T; Piskur J; Lindvall M; Johansson S; Almqvist M; Laurell T; Nilsson J Anal Chem; 2007 Apr; 79(7):2984-91. PubMed ID: 17313183 [TBL] [Abstract][Full Text] [Related]
25. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Park JS; Jung HI Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116 [TBL] [Abstract][Full Text] [Related]
26. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Choi S; Song S; Choi C; Park JK Anal Chem; 2009 Jan; 81(1):50-5. PubMed ID: 19117444 [TBL] [Abstract][Full Text] [Related]
27. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Yamada M; Seki M Lab Chip; 2005 Nov; 5(11):1233-9. PubMed ID: 16234946 [TBL] [Abstract][Full Text] [Related]
28. Nanoliter dispensing method by degassed poly(dimethylsiloxane) microchannels and its application in protein crystallization. Zhou X; Lau L; Lam WW; Au SW; Zheng B Anal Chem; 2007 Jul; 79(13):4924-30. PubMed ID: 17547370 [TBL] [Abstract][Full Text] [Related]
29. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Park JS; Song SH; Jung HI Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305 [TBL] [Abstract][Full Text] [Related]
30. Drug permeability assay using microhole-trapped cells in a microfluidic device. Yeon JH; Park JK Anal Chem; 2009 Mar; 81(5):1944-51. PubMed ID: 19203200 [TBL] [Abstract][Full Text] [Related]
31. Preparation of monodisperse porous silica particles using poly(glycidyl methacrylate) microspheres as a template. Grama S; Horák D Physiol Res; 2015; 64(Suppl 1):S11-7. PubMed ID: 26447591 [TBL] [Abstract][Full Text] [Related]
32. Covalent immobilization of glucose oxidase onto poly(styrene-co-glycidyl methacrylate) monodisperse fluorescent microspheres synthesized by dispersion polymerization. Hou X; Liu B; Deng X; Zhang B; Chen H; Luo R Anal Biochem; 2007 Sep; 368(1):100-10. PubMed ID: 17562322 [TBL] [Abstract][Full Text] [Related]
33. Microparticle collection and concentration via a miniature surface acoustic wave device. Tan MK; Friend JR; Yeo LY Lab Chip; 2007 May; 7(5):618-25. PubMed ID: 17476381 [TBL] [Abstract][Full Text] [Related]
34. A water-activated pump for portable microfluidic applications. Good BT; Bowman CN; Davis RH J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553 [TBL] [Abstract][Full Text] [Related]
35. Resist-free patterning of surface architectures in polymer-based microanalytical devices. McCarley RL; Vaidya B; Wei S; Smith AF; Patel AB; Feng J; Murphy MC; Soper SA J Am Chem Soc; 2005 Jan; 127(3):842-3. PubMed ID: 15656615 [TBL] [Abstract][Full Text] [Related]
36. Ultrafast self-assembly of microscale particles by open-channel flow. Choi S; Park I; Hao Z; Holman HY; Pisano AP; Zohdi TI Langmuir; 2010 Apr; 26(7):4661-7. PubMed ID: 19921822 [TBL] [Abstract][Full Text] [Related]
37. Submicron separation of microspheres via travelling surface acoustic waves. Destgeer G; Ha BH; Jung JH; Sung HJ Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065 [TBL] [Abstract][Full Text] [Related]
38. Benchtop fabrication of microfluidic systems based on curable polymers with improved solvent compatibility. Hashimoto M; Langer R; Kohane DS Lab Chip; 2013 Jan; 13(2):252-9. PubMed ID: 23192674 [TBL] [Abstract][Full Text] [Related]
39. Facile fabrication of a rigid and chemically resistant micromixer system from photocurable inorganic polymer by static liquid photolithography (SLP). Fang Q; Kim DP; Li X; Yoon TH; Li Y Lab Chip; 2011 Aug; 11(16):2779-84. PubMed ID: 21713287 [TBL] [Abstract][Full Text] [Related]
40. Surface modification method of microchannels for gas-liquid two-phase flow in microchips. Hibara A; Iwayama S; Matsuoka S; Ueno M; Kikutani Y; Tokeshi M; Kitamori T Anal Chem; 2005 Feb; 77(3):943-7. PubMed ID: 15679365 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]