These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

487 related articles for article (PubMed ID: 18834892)

  • 1. Requirements for comparing the performance of finite element models of biological structures.
    Dumont ER; Grosse IR; Slater GJ
    J Theor Biol; 2009 Jan; 256(1):96-103. PubMed ID: 18834892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
    Grosse IR; Dumont ER; Coletta C; Tolleson A
    Anat Rec (Hoboken); 2007 Sep; 290(9):1069-88. PubMed ID: 17721980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling masticatory muscle force in finite element analysis: sensitivity analysis using principal coordinates analysis.
    Ross CF; Patel BA; Slice DE; Strait DS; Dechow PC; Richmond BG; Spencer MA
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):288-99. PubMed ID: 15747351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of factors influencing finite element vertebral model predictions.
    Jones AC; Wilcox RK
    J Biomech Eng; 2007 Dec; 129(6):898-903. PubMed ID: 18067394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element analysis (FEA): applying an engineering method to functional morphology in anthropology and human biology.
    Panagiotopoulou O
    Ann Hum Biol; 2009; 36(5):609-23. PubMed ID: 19657767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element analysis in vertebrate biomechanics.
    Ross CF
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):253-8. PubMed ID: 15754323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using finite-element analysis to investigate suture morphology: a case study using large carnivorous dinosaurs.
    Rayfield EJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):349-65. PubMed ID: 15751029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of beam theory and finite-element analysis with in vivo bone strain data from the alligator cranium.
    Metzger KA; Daniel WJ; Ross CF
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):331-48. PubMed ID: 15747347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental validation of a finite element model of a human cadaveric tibia.
    Gray HA; Taddei F; Zavatsky AB; Cristofolini L; Gill HS
    J Biomech Eng; 2008 Jun; 130(3):031016. PubMed ID: 18532865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro.
    Schileo E; Taddei F; Cristofolini L; Viceconti M
    J Biomech; 2008; 41(2):356-67. PubMed ID: 18022179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling elastic properties in finite-element analysis: how much precision is needed to produce an accurate model?
    Strait DS; Wang Q; Dechow PC; Ross CF; Richmond BG; Spencer MA; Patel BA
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):275-87. PubMed ID: 15747346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and validation of a three-dimensional finite element model of the face.
    Barbarino GG; Jabareen M; Trzewik J; Nkengne A; Stamatas G; Mazza E
    J Biomech Eng; 2009 Apr; 131(4):041006. PubMed ID: 19275435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of the left atrium to facilitate the design of an endoscopic atrial retractor.
    Jernigan SR; Buckner GD; Eischen JW; Cormier DR
    J Biomech Eng; 2007 Dec; 129(6):825-37. PubMed ID: 18067386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation on three-dimensional finite element models of the temporomandibular joint.
    Liu Z; Fan Y; Qian Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S53-8. PubMed ID: 18282646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the mouse tibia: estimating endocortical strain during three-point bending in SAMP6 osteoporotic mice.
    Silva MJ; Brodt MD; Hucker WJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):380-90. PubMed ID: 15747345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite-element modeling of the anthropoid mandible: the effects of altered boundary conditions.
    Marinescu R; Daegling DJ; Rapoff AJ
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):300-9. PubMed ID: 15747352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment.
    Schmidt H; Heuer F; Drumm J; Klezl Z; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 May; 22(4):377-84. PubMed ID: 17204355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.
    Weinberg EJ; Kaazempur-Mofrad MR
    J Biomech; 2006; 39(8):1557-61. PubMed ID: 16038913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite element and experimental cortex strains of the intact and implanted tibia.
    Completo A; Fonseca F; Simões JA
    J Biomech Eng; 2007 Oct; 129(5):791-7. PubMed ID: 17887906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental observation, theoretical models, and biomechanical inference in the study of mandibular form.
    Daegling DJ; Hylander WL
    Am J Phys Anthropol; 2000 Aug; 112(4):541-51. PubMed ID: 10918128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.