These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

477 related articles for article (PubMed ID: 18834892)

  • 41. Myocardial material parameter estimation: a non-homogeneous finite element study from simple shear tests.
    Schmid H; O'Callaghan P; Nash MP; Lin W; LeGrice IJ; Smaill BH; Young AA; Hunter PJ
    Biomech Model Mechanobiol; 2008 Jun; 7(3):161-73. PubMed ID: 17487519
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Functional shape of the skull in vertebrates: which forces determine skull morphology in lower primates and ancestral synapsids?
    Preuschoft H; Witzel U
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Apr; 283(2):402-13. PubMed ID: 15754317
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimating the external force acting on the human eye lens during accommodation by finite element modelling.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2006 Oct; 46(21):3642-50. PubMed ID: 16750240
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Analyzing the interplay between single cell rheology and force generation through large deformation finite element models.
    Monteiro E; Yvonnet J; He QC; Cardoso O; Asnacios A
    Biomech Model Mechanobiol; 2011 Dec; 10(6):813-30. PubMed ID: 21181227
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing behind armor blunt trauma in accordance with the National Institute of Justice Standard for Personal Body Armor Protection using finite element modeling.
    Roberts JC; Ward EE; Merkle AC; O'Connor JV
    J Trauma; 2007 May; 62(5):1127-33. PubMed ID: 17495712
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A finite element study of age-based size and shape variation of the human rib cage.
    Gayzik FS; Loftis KL; Slice DE; Stitzel JD
    Biomed Sci Instrum; 2006; 42():19-24. PubMed ID: 16817579
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tonic finite element model of the lower limb.
    Behr M; Arnoux PJ; Serre T; Thollon L; Brunet C
    J Biomech Eng; 2006 Apr; 128(2):223-8. PubMed ID: 16524334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sutural strain in orthopedic headgear therapy: a finite element analysis.
    Holberg C; Holberg N; Rudzki-Janson I
    Am J Orthod Dentofacial Orthop; 2008 Jul; 134(1):53-9. PubMed ID: 18617103
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fast finite element modeling for surgical simulation.
    Berkley J; Weghorst S; Gladstone H; Raugi G; Berg D; Ganter M
    Stud Health Technol Inform; 1999; 62():55-61. PubMed ID: 10538399
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Model sensitivity and use of the comparative finite element method in mammalian jaw mechanics: mandible performance in the gray wolf.
    Tseng ZJ; McNitt-Gray JL; Flashner H; Wang X; Enciso R
    PLoS One; 2011 Apr; 6(4):e19171. PubMed ID: 21559475
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High-resolution three-dimensional computer simulation of hominid cranial mechanics.
    Wroe S; Moreno K; Clausen P; McHenry C; Curnoe D
    Anat Rec (Hoboken); 2007 Oct; 290(10):1248-55. PubMed ID: 17847056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimation of time since death by heat-flow Finite-Element model part II: application to non-standard cooling conditions and preliminary results in practical casework.
    Mall G; Eisenmenger W
    Leg Med (Tokyo); 2005 Mar; 7(2):69-80. PubMed ID: 15708329
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Strain energy density as a rupture criterion for the kidney: impact tests on porcine organs, finite element simulation, and a baseline comparison between human and porcine tissues.
    Snedeker JG; Barbezat M; Niederer P; Schmidlin FR; Farshad M
    J Biomech; 2005 May; 38(5):993-1001. PubMed ID: 15797581
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laser-assisted straightening of deformed cartilage: numerical model.
    Protsenko DE; Wong BJ
    Lasers Surg Med; 2007 Mar; 39(3):245-55. PubMed ID: 17345625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A nonlinear finite element model of cartilage growth.
    Davol A; Bingham MS; Sah RL; Klisch SM
    Biomech Model Mechanobiol; 2008 Aug; 7(4):295-307. PubMed ID: 17701433
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A convenient approach for finite-element-analyses of orthopaedic implants in bone contact: modeling and experimental validation.
    Kluess D; Souffrant R; Mittelmeier W; Wree A; Schmitz KP; Bader R
    Comput Methods Programs Biomed; 2009 Jul; 95(1):23-30. PubMed ID: 19231021
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic response of the brain with vasculature: a three-dimensional computational study.
    Ho J; Kleiven S
    J Biomech; 2007; 40(13):3006-12. PubMed ID: 17433331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A finite element simulation scheme for biological muscular hydrostats.
    Liang Y; McMeeking RM; Evans AG
    J Theor Biol; 2006 Sep; 242(1):142-50. PubMed ID: 16580021
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of turbulent airflow using a CT based upper airway model of a racehorse.
    Rakesh V; Datta AK; Ducharme NG; Pease AP
    J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.