These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18834944)

  • 1. The influence of feedback valence in associative learning.
    Bischoff-Grethe A; Hazeltine E; Bergren L; Ivry RB; Grafton ST
    Neuroimage; 2009 Jan; 44(1):243-51. PubMed ID: 18834944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural processing of food and monetary rewards is modulated by metabolic state.
    Yousuf M; Heldmann M; Göttlich M; Münte TF; Doñamayor N
    Brain Imaging Behav; 2018 Oct; 12(5):1379-1392. PubMed ID: 29243121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.
    Bellebaum C; Jokisch D; Gizewski ER; Forsting M; Daum I
    Behav Brain Res; 2012 Feb; 227(1):241-51. PubMed ID: 22074898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feedback-related brain potential activity complies with basic assumptions of associative learning theory.
    Luque D; López FJ; Marco-Pallares J; Càmara E; Rodríguez-Fornells A
    J Cogn Neurosci; 2012 Apr; 24(4):794-808. PubMed ID: 21981667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experience-dependent activation patterns in human brain during visual-motor associative learning.
    Eliassen JC; Souza T; Sanes JN
    J Neurosci; 2003 Nov; 23(33):10540-7. PubMed ID: 14627638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motivational orientation modulates the neural response to reward.
    Linke J; Kirsch P; King AV; Gass A; Hennerici MG; Bongers A; Wessa M
    Neuroimage; 2010 Feb; 49(3):2618-25. PubMed ID: 19770058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning by doing: an fMRI study of feedback-related brain activations.
    Marco-Pallarés J; Müller SV; Münte TF
    Neuroreport; 2007 Sep; 18(14):1423-6. PubMed ID: 17712267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment.
    Mattfeld AT; Gluck MA; Stark CE
    Learn Mem; 2011; 18(11):703-11. PubMed ID: 22021252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation between striatal regions while learning to categorize via feedback and via observation.
    Cincotta CM; Seger CA
    J Cogn Neurosci; 2007 Feb; 19(2):249-65. PubMed ID: 17280514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling.
    Seger CA; Peterson EJ; Cincotta CM; Lopez-Paniagua D; Anderson CW
    Neuroimage; 2010 Apr; 50(2):644-56. PubMed ID: 19969091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disrupted expected value and prediction error signaling in youths with disruptive behavior disorders during a passive avoidance task.
    White SF; Pope K; Sinclair S; Fowler KA; Brislin SJ; Williams WC; Pine DS; Blair RJ
    Am J Psychiatry; 2013 Mar; 170(3):315-23. PubMed ID: 23450288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.
    Kobza S; Bellebaum C
    Neuropsychologia; 2015 Jan; 66():75-87. PubMed ID: 25446969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Value of Being Wrong: Intermittent Feedback Delivery Alters the Striatal Response to Negative Feedback.
    Lempert KM; Tricomi E
    J Cogn Neurosci; 2016 Feb; 28(2):261-74. PubMed ID: 26439265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Better or worse than expected? Aging, learning, and the ERN.
    Eppinger B; Kray J; Mock B; Mecklinger A
    Neuropsychologia; 2008 Jan; 46(2):521-39. PubMed ID: 17936313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of feedback related activity in the rostral anterior cingulate cortex during trial and error exploration.
    Amiez C; Sallet J; Procyk E; Petrides M
    Neuroimage; 2012 Nov; 63(3):1078-90. PubMed ID: 22732558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the utility of positive and negative feedback in a paired-associate learning task.
    Arbel Y; Murphy A; Donchin E
    J Cogn Neurosci; 2014 Jul; 26(7):1445-53. PubMed ID: 24666164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The anterior cingulate cortex responds differently to the validity and valence of feedback in a time-estimation task.
    Mies GW; van der Molen MW; Smits M; Hengeveld MW; van der Veen FM
    Neuroimage; 2011 Jun; 56(4):2321-8. PubMed ID: 21513804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning-related changes in brain activity following errors and performance feedback in schizophrenia.
    Morris SE; Heerey EA; Gold JM; Holroyd CB
    Schizophr Res; 2008 Feb; 99(1-3):274-85. PubMed ID: 17889510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vicarious reinforcement learning signals when instructing others.
    Apps MA; Lesage E; Ramnani N
    J Neurosci; 2015 Feb; 35(7):2904-13. PubMed ID: 25698730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.