These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 18835145)
1. Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Stritih N; Stumpner A Zoology (Jena); 2009; 112(1):48-68. PubMed ID: 18835145 [TBL] [Abstract][Full Text] [Related]
2. Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Strauss J; Lakes-Harlan R Brain Behav Evol; 2008; 71(3):167-80. PubMed ID: 18230969 [TBL] [Abstract][Full Text] [Related]
3. Anatomy and physiology of a set of low-frequency vibratory interneurons in a nonhearing ensiferan (Troglophilus neglectus, rhaphidophoridae). Stritih N J Comp Neurol; 2009 Oct; 516(6):519-32. PubMed ID: 19673004 [TBL] [Abstract][Full Text] [Related]
4. Frequency processing at consecutive levels in the auditory system of bush crickets (tettigoniidae). Ostrowski TD; Stumpner A J Comp Neurol; 2010 Aug; 518(15):3101-16. PubMed ID: 20533362 [TBL] [Abstract][Full Text] [Related]
5. Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). Strauss J; Lakes-Harlan R J Comp Neurol; 2008 Nov; 511(1):81-91. PubMed ID: 18729154 [TBL] [Abstract][Full Text] [Related]
6. The bimodal auditory-vibratory system of the thoracic ventral nerve cord in Locusta migratoria (Acrididae, Locustinae, Oedipodini). Bickmeyer U; Kalmring K; Halex H; Mücke A J Exp Zool; 1992 Dec; 264(4):381-94. PubMed ID: 1460436 [TBL] [Abstract][Full Text] [Related]
7. Hearing in mole crickets (Orthoptera: Gryllotalpidae) at sonic and ultrasonic frequencies. Mason AC; Forrest TG; Hoy RR J Exp Biol; 1998 Jun; 201(Pt 12):1967-79. PubMed ID: 9722432 [TBL] [Abstract][Full Text] [Related]
8. Morphology and physiology of vibratory interneurons in the thoracic ganglia of the southern green stinkbug Nezara viridula (L.). Zorović M; Presern J; Cokl A J Comp Neurol; 2008 May; 508(2):365-81. PubMed ID: 18335563 [TBL] [Abstract][Full Text] [Related]
9. Central projections of auditory receptor neurons of crickets. Imaizumi K; Pollack GS J Comp Neurol; 2005 Dec; 493(3):439-47. PubMed ID: 16261528 [TBL] [Abstract][Full Text] [Related]
10. Neuroanatomy of the complex tibial organ in the splay-footed cricket Comicus calcaris Irish 1986 (Orthoptera: Ensifera: Schizodactylidae). Strauss J; Lakes-Harlan R J Comp Neurol; 2010 Nov; 518(22):4567-80. PubMed ID: 20886622 [TBL] [Abstract][Full Text] [Related]
11. The function of the cercal sensory system in escape behavior of the cave cricket Troglophilus neglectus Krauss. Schrader S Pflugers Arch; 2000; 439(3 Suppl):R187-9. PubMed ID: 10653187 [TBL] [Abstract][Full Text] [Related]
12. Morphology and physiology of auditory and vibratory ascending interneurones in bushcrickets. Nebeling B J Exp Zool; 2000 Feb; 286(3):219-30. PubMed ID: 10653961 [TBL] [Abstract][Full Text] [Related]
13. Mating behaviour and vibratory signalling in non-hearing cave crickets reflect primitive communication of Ensifera. Stritih N; Čokl A PLoS One; 2012; 7(10):e47646. PubMed ID: 23094071 [TBL] [Abstract][Full Text] [Related]
14. Auditory DUM neurons in a bush-cricket: A filter bank for carrier frequency. Lefebvre PC; Seifert M; Stumpner A J Comp Neurol; 2018 May; 526(7):1166-1182. PubMed ID: 29380378 [TBL] [Abstract][Full Text] [Related]
15. The subgenual organ complex in the cave cricket Troglophilus neglectus (Orthoptera: Rhaphidophoridae): comparative innervation and sensory evolution. Strauß J; Stritih N; Lakes-Harlan R R Soc Open Sci; 2014 Oct; 1(2):140240. PubMed ID: 26064547 [TBL] [Abstract][Full Text] [Related]
16. Central projection of auditory receptors in the prothoracic ganglion of the buschcricket Psorodonotus illyricus (tettigoniidae): computer-aided analysis of the end branch pattern. Ebendt R; Friedel J; Kalmring K J Neurobiol; 1994 Jan; 25(1):35-49. PubMed ID: 8113781 [TBL] [Abstract][Full Text] [Related]
17. Embryonic development and evolutionary origin of the Orthopteran auditory organs. Meier T; Reichert H J Neurobiol; 1990 Jun; 21(4):592-610. PubMed ID: 2376731 [TBL] [Abstract][Full Text] [Related]
18. Temporal processing properties of auditory DUM neurons in a bush-cricket. Stumpner A; Lefebvre PC; Seifert M; Ostrowski TD J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Oct; 205(5):717-733. PubMed ID: 31327050 [TBL] [Abstract][Full Text] [Related]
19. Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa. Shen JX Jpn J Physiol; 1993; 43 Suppl 1():S239-46. PubMed ID: 8271504 [TBL] [Abstract][Full Text] [Related]
20. Distribution of synapses on two ascending interneurones carrying frequency-specific information in the auditory system of the cricket: evidence for GABAergic inputs. Hardt M; Watson AH J Comp Neurol; 1994 Jul; 345(4):481-95. PubMed ID: 7962696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]