BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 18835301)

  • 1. Novel analysis of sleep patterns in rats separates periods of vigilance cycling from long-duration wake events.
    Simasko SM; Mukherjee S
    Behav Brain Res; 2009 Jan; 196(2):228-36. PubMed ID: 18835301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic alcohol treatment in rats alters sleep by fragmenting periods of vigilance cycling in the light period with extended wakenings.
    Mukherjee S; Simasko SM
    Behav Brain Res; 2009 Mar; 198(1):113-24. PubMed ID: 19014977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kv3 potassium channels control the duration of different arousal states by distinct stochastic and clock-like mechanisms.
    Joho RH; Marks GA; Espinosa F
    Eur J Neurosci; 2006 Mar; 23(6):1567-74. PubMed ID: 16553620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.
    Cui SY; Li SJ; Cui XY; Zhang XQ; Yu B; Sheng ZF; Huang YL; Cao Q; Xu YP; Lin ZG; Yang G; Song JZ; Ding H; Wang ZJ; Zhang YH
    J Neurochem; 2016 Feb; 136(3):609-19. PubMed ID: 26558357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small platform sleep deprivation selectively increases the average duration of rapid eye movement sleep episodes during sleep rebound.
    Kitka T; Katai Z; Pap D; Molnar E; Adori C; Bagdy G
    Behav Brain Res; 2009 Dec; 205(2):482-7. PubMed ID: 19665493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sleep-wake patterns in a novel transgenic mouse line overexpressing human prepro-orexin/hypocretin.
    Mäkelä KA; Wigren HK; Zant JC; Sakurai T; Alhonen L; Kostin A; Porkka-Heiskanen T; Herzig KH
    Acta Physiol (Oxf); 2010 Mar; 198(3):237-49. PubMed ID: 20003098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a short light-dark cycle on the sleep-wake patterns of the cat.
    Lucas EA
    Sleep; 1979; 1(3):299-317. PubMed ID: 228374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dim light at night does not disrupt timing or quality of sleep in mice.
    Borniger JC; Weil ZM; Zhang N; Nelson RJ
    Chronobiol Int; 2013 Oct; 30(8):1016-23. PubMed ID: 23837748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Baseline sleep-wake patterns in the pointer dog.
    Lucas EA; Powell EW; Murphree OD
    Physiol Behav; 1977 Aug; 19(2):285-91. PubMed ID: 203958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sleep stages and EEG power spectrum in relation to acoustical stimulus arousal threshold in the rat.
    Neckelmann D; Ursin R
    Sleep; 1993 Aug; 16(5):467-77. PubMed ID: 8378687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Night-time right hemisphere superiority and daytime left hemisphere superiority: a repatterning of laterality across wake-sleep-wake states.
    Casagrande M; Bertini M
    Biol Psychol; 2008 Mar; 77(3):337-42. PubMed ID: 18162282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prenatal development of sleep-wake patterns in sheep.
    Szeto HH; Hinman DJ
    Sleep; 1985 Dec; 8(4):347-55. PubMed ID: 3880175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships among wake episode lengths, contiguous sleep episode lengths, and electroencephalographic delta waves in rats with suprachiasmatic nuclei lesions.
    Mistlberger RE; Bergmann BM; Rechtschaffen A
    Sleep; 1987 Feb; 10(1):12-24. PubMed ID: 3563245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of selective dopamine D4 receptor antagonist, L-741,741, on sleep and wakefulness in the rat.
    Cavas M; Navarro JF
    Prog Neuropsychopharmacol Biol Psychiatry; 2006 Jun; 30(4):668-78. PubMed ID: 16457926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silencing of Cholinergic Basal Forebrain Neurons Using Archaerhodopsin Prolongs Slow-Wave Sleep in Mice.
    Shi YF; Han Y; Su YT; Yang JH; Yu YQ
    PLoS One; 2015; 10(7):e0130130. PubMed ID: 26151909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the sleep-wake rhythm to an 8-hour advance of the light-dark cycle in the rat.
    Sei H; Kiuchi T; Chang HY; Seno H; Sano A; Morita Y
    Chronobiol Int; 1994 Oct; 11(5):293-300. PubMed ID: 7828212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation.
    Vyazovskiy VV; Borbély AA; Tobler I
    J Neurophysiol; 2002 Nov; 88(5):2280-6. PubMed ID: 12424269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prominent role for amygdaloid complexes in the Variability in Heart Rate (VHR) during Rapid Eye Movement (REM) sleep relative to wakefulness.
    Desseilles M; Vu TD; Laureys S; Peigneux P; Degueldre C; Phillips C; Maquet P
    Neuroimage; 2006 Sep; 32(3):1008-15. PubMed ID: 16875846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the 5-HT₆ receptor antagonists SB-399885 and RO-4368554 and of the 5-HT(2A) receptor antagonist EMD 281014 on sleep and wakefulness in the rat during both phases of the light-dark cycle.
    Monti JM; Jantos H
    Behav Brain Res; 2011 Jan; 216(1):381-8. PubMed ID: 20732355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.