These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 18835387)

  • 1. Protein-protein interactions and lens transparency.
    Takemoto L; Sorensen CM
    Exp Eye Res; 2008 Dec; 87(6):496-501. PubMed ID: 18835387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of short-range protein interactions in lens opacifications.
    Ponce A; Sorensen C; Takemoto L
    Mol Vis; 2006 Aug; 12():879-84. PubMed ID: 16917488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The possible role of alpha-crystallins in human senile cataractogenesis.
    Takemoto L; Boyle D
    Int J Biol Macromol; 1998; 22(3-4):331-7. PubMed ID: 9650088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein posttranslational modification (PTM) by glycation: Role in lens aging and age-related cataractogenesis.
    Fan X; Monnier VM
    Exp Eye Res; 2021 Sep; 210():108705. PubMed ID: 34297945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens aging: effects of crystallins.
    Sharma KK; Santhoshkumar P
    Biochim Biophys Acta; 2009 Oct; 1790(10):1095-108. PubMed ID: 19463898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomerization of aspartyl residues in crystallins and its influence upon cataract.
    Fujii N; Takata T; Fujii N; Aki K
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):183-91. PubMed ID: 26275494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of α-crystallins: Traversing from in vitro to in vivo.
    Haslbeck M; Peschek J; Buchner J; Weinkauf S
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):149-66. PubMed ID: 26116912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lens β-crystallins: the role of deamidation and related modifications in aging and cataract.
    Lampi KJ; Wilmarth PA; Murray MR; David LL
    Prog Biophys Mol Biol; 2014 Jul; 115(1):21-31. PubMed ID: 24613629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The etiology of human age-related cataract. Proteins don't last forever.
    Truscott RJ; Friedrich MG
    Biochim Biophys Acta; 2016 Jan; 1860(1 Pt B):192-8. PubMed ID: 26318017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ageing and vision: structure, stability and function of lens crystallins.
    Bloemendal H; de Jong W; Jaenicke R; Lubsen NH; Slingsby C; Tardieu A
    Prog Biophys Mol Biol; 2004 Nov; 86(3):407-85. PubMed ID: 15302206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Proteome of Cataract Markers: Focus on Crystallins.
    Zhang K; Zhu X; Lu Y
    Adv Clin Chem; 2018; 86():179-210. PubMed ID: 30144840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylglyoxal-derived modifications in lens aging and cataract formation.
    Shamsi FA; Lin K; Sady C; Nagaraj RH
    Invest Ophthalmol Vis Sci; 1998 Nov; 39(12):2355-64. PubMed ID: 9804144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The recent progress on the role of alpha-crystallin as a molecular chaperone in cataractogenesis].
    Yan H; Hui Y
    Yan Ke Xue Bao; 2000 Jun; 16(2):91-6. PubMed ID: 12579912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparency and non-refractive functions of crystallins--a proposal.
    Bhat SP
    Exp Eye Res; 2004 Dec; 79(6):809-16. PubMed ID: 15642317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Ultraviolet Radiation on the Lens.
    Borges-Rodríguez Y; Morales-Cueto R; Rivillas-Acevedo L
    Curr Protein Pept Sci; 2023; 24(3):215-228. PubMed ID: 36617712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of alpha-crystallin chaperone activity: a target to prevent or delay cataract?
    Kumar PA; Reddy GB
    IUBMB Life; 2009 May; 61(5):485-95. PubMed ID: 19391162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo modification of the C-terminal lysine of human lens alphaB-crystallin.
    Lin P; Smith DL; Smith JB
    Exp Eye Res; 1997 Nov; 65(5):673-80. PubMed ID: 9367647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.