These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18835407)

  • 1. Compensating for camera translation in video eye-movement recordings by tracking a representative landmark selected automatically by a genetic algorithm.
    Karmali F; Shelhamer M
    J Neurosci Methods; 2009 Jan; 176(2):157-65. PubMed ID: 18835407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensating for camera translation in video eye movement recordings by tracking a landmark selected automatically by a genetic algorithm.
    Karmali F; Shelhamer M
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5298-301. PubMed ID: 17946296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of camera translation in eye video recordings using multiple methods.
    Karmali F; Shelhamer M
    Ann N Y Acad Sci; 2005 Apr; 1039():470-6. PubMed ID: 15827002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm to correct for camera vibrations in optical motion tracking systems.
    Huber P; Cagran C; Müller W
    J Biomech; 2011 Jul; 44(11):2172-6. PubMed ID: 21640352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic detection of camera translation in eye video recordings using multiple methods.
    Karmali F; Shelhamer M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():1525-8. PubMed ID: 17271987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an automated region of interest selection method for 3D surface monitoring of head motion.
    Kang HJ; Grelewicz Z; Wiersma RD
    Med Phys; 2012 Jun; 39(6):3270-82. PubMed ID: 22755710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A torsional eye movement calculation algorithm for low contrast images in video-oculography.
    Jansen SH; Kingma H; Peeters RM; Westra RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5628-31. PubMed ID: 21097304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving calibration of 3-D video oculography systems.
    Schreiber K; Haslwanter T
    IEEE Trans Biomed Eng; 2004 Apr; 51(4):676-9. PubMed ID: 15072222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outward-looking circular motion analysis of large image sequences.
    Jiang G; Wei Y; Quan L; Tsui HT; Shum HY
    IEEE Trans Pattern Anal Mach Intell; 2005 Feb; 27(2):271-7. PubMed ID: 15688564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye-tracking architecture for biometrics and remote monitoring.
    Talukder A; Morookian JM; Monacos S; Lam R; LeBaw C; Lambert JL
    Appl Opt; 2005 Feb; 44(5):693-700. PubMed ID: 15751851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Video segmentation of moving humans for assistive environments.
    Maglogiannis I; Delibasis KK; Goudas T; Prentza A; Malamateniou F; Vassilacopoulos G
    Stud Health Technol Inform; 2013; 190():179-82. PubMed ID: 23823415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying motion in video recordings of neonatal seizures by robust motion trackers based on block motion models.
    Karayiannis NB; Xiong Y; Frost JD; Wise MS; Mizrahi EM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1065-77. PubMed ID: 15977736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
    Chen CH; Azari DP; Hu YH; Lindstrom MJ; Thelen D; Yen TY; Radwin RG
    Ergonomics; 2015; 58(12):2057-66. PubMed ID: 25978764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple pupil-independent method for recording eye movements in rodents using video.
    Kim J
    J Neurosci Methods; 2004 Sep; 138(1-2):165-71. PubMed ID: 15325125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multicamera tracking of articulated human motion using shape and motion cues.
    Sundaresan A; Chellappa R
    IEEE Trans Image Process; 2009 Sep; 18(9):2114-26. PubMed ID: 19423441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic calibration of pan-tilt-zoom cameras for traffic monitoring.
    Song KT; Tai JC
    IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1091-103. PubMed ID: 17036815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Video-based head movement compensation for novel haploscopic eye-tracking apparatus.
    Irsch K; Ramey NA; Kurz A; Guyton DL; Ying HS
    Invest Ophthalmol Vis Sci; 2009 Mar; 50(3):1152-7. PubMed ID: 18978348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motion segmentation using occlusions.
    Ogale AS; Fermüller C; Aloimonos Y
    IEEE Trans Pattern Anal Mach Intell; 2005 Jun; 27(6):988-92. PubMed ID: 15943429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of video and magnetic search coil recordings of mouse eye movements.
    Stahl JS; van Alphen AM; De Zeeuw CI
    J Neurosci Methods; 2000 Jun; 99(1-2):101-10. PubMed ID: 10936649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.