These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 18835476)

  • 21. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heat exchangers between body and environment.
    Stolwijk JA
    Bibl Radiol; 1975; (6):144-50. PubMed ID: 1180844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method?
    Wang F; Gao C; Kuklane K; Holmér I
    Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling the chemical protective performance of NBC clothing material.
    Brasser P
    J Occup Environ Hyg; 2004 Sep; 1(9):620-8. PubMed ID: 15559334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clothing insulation in a hypobaric environment.
    Chang SK; Santee WR
    Aviat Space Environ Med; 1996 Sep; 67(9):827-34. PubMed ID: 9025797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions.
    Fu M; Weng WG; Yuan HY
    J Hazard Mater; 2014 Jul; 276():383-92. PubMed ID: 24922096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correction of clothing insulation for movement and wind effects, a meta-analysis.
    Havenith G; Nilsson HO
    Eur J Appl Physiol; 2004 Sep; 92(6):636-40. PubMed ID: 15138827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation.
    Lu Y; Wang F; Wan X; Song G; Shi W; Zhang C
    Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of moisture content within multilayer protective clothing on protection from radiation and steam.
    Su Y; Li J; Song G
    Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.
    Lu Y; Song G; Li J
    Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of two tracer gas dilution methods for the determination of clothing ventilation and of vapour resistance.
    Havenith G; Zhang P; Hatcher K; Daanen H
    Ergonomics; 2010 Apr; 53(4):548-58. PubMed ID: 20309750
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal insulation of materials with possible aerospace application.
    Kaufman WC; Bothe DJ
    Aviat Space Environ Med; 1986 Oct; 57(10 Pt 1):993-6. PubMed ID: 3778398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effects of fabric air permeability and moisture absorption on clothing microclimate and subjective sensation in sedentary women at cyclic changes of ambient temperatures from 27 degrees C to 33 degrees C.
    Ha M; Tokura H; Yanai Y; Moriyama T; Tsuchiya N
    J Hum Ergol (Tokyo); 1999 Dec; 28(1-2):1-13. PubMed ID: 11957318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical heat stress evaluation of clothing ensembles with different levels of porosity.
    Bernard T; Ashley C; Trentacosta J; Kapur V; Tew S
    Ergonomics; 2010 Aug; 53(8):1048-58. PubMed ID: 20658399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Comparative evaluation of methods accepted by Russian and international standards to assess total resistance of special cold-proof clothing set].
    Afanas'eva RF; Bessonova NA; Burmistrova OV; Burmistrov VM; Khol'mer I; Kuklane K
    Med Tr Prom Ekol; 1999; (12):18-24. PubMed ID: 11965735
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of moisture absorption in clothing on the human heat balance.
    Lotens WA; Havenith G
    Ergonomics; 1995 Jun; 38(6):1092-113. PubMed ID: 7758441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Laboratory determination of compost physical parameters for modeling of airflow characteristics.
    Ahn HK; Richard TL; Glanville TD
    Waste Manag; 2008; 28(3):660-70. PubMed ID: 17590325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation.
    Lu Y; Wang F; Wan X; Song G; Zhang C; Shi W
    Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical assessment of heat insulation rescue foils.
    Ennemoser O; Ambach W; Flora G
    Int J Sports Med; 1988 Apr; 9(2):179-82. PubMed ID: 3384525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical model of pesticide penetration through woven work clothing fabrics.
    Lee S; Obendorf SK
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):266-73. PubMed ID: 16059749
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.