These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 188356)
1. Biophysical mechanisms of anesthetic action: historical perspective and review of current concepts. Kaufman RD Anesthesiology; 1977 Jan; 46(1):49-62. PubMed ID: 188356 [TBL] [Abstract][Full Text] [Related]
2. Membrane expansion and inhalation anesthetics. Mean excess volume hypothesis. Mori T; Matubayasi N; Ueda I Mol Pharmacol; 1984 Jan; 25(1):123-30. PubMed ID: 6546781 [TBL] [Abstract][Full Text] [Related]
3. Saturable binding of anesthetics to nicotinic acetylcholine receptors. A possible mechanism of anesthetic action. Lin L; Koblin DD; Wang HH Ann N Y Acad Sci; 1991; 625():628-44. PubMed ID: 1647740 [TBL] [Abstract][Full Text] [Related]
4. Correlation of general anesthetic potency with solubility in membranes. Janoff AS; Pringle MJ; Miller KW Biochim Biophys Acta; 1981 Nov; 649(1):125-8. PubMed ID: 7306543 [TBL] [Abstract][Full Text] [Related]
5. Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering? Firestone LL; Alifimoff JK; Miller KW Mol Pharmacol; 1994 Sep; 46(3):508-15. PubMed ID: 7935332 [TBL] [Abstract][Full Text] [Related]
6. Is membrane expansion relevant to anesthesia? Mean excess volume. Matubayasi N; Ueda I Anesthesiology; 1983 Dec; 59(6):541-6. PubMed ID: 6650911 [TBL] [Abstract][Full Text] [Related]
7. The anesthetic effect of dexmedetomidine does not adhere to the Meyer-Overton rule but is reversed by hydrostatic pressure. Tonner PH; Scholz J; Koch C; Schulte am Esch J Anesth Analg; 1997 Mar; 84(3):618-22. PubMed ID: 9052313 [TBL] [Abstract][Full Text] [Related]
8. Anesthetics expand partial molal volume of lipid-free protein dissolved in water: electrostriction hypothesis. Ueda I; Mashimo T Physiol Chem Phys; 1982; 14(2):157-64. PubMed ID: 7184036 [TBL] [Abstract][Full Text] [Related]
9. Physical and physicochemical factors effecting transport of chlorohydrocarbon gases from lung alveolar air to blood as measured by the causation of narcosis. Holder JW J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2012 Jan; 30(1):42-80. PubMed ID: 22458856 [TBL] [Abstract][Full Text] [Related]
10. [Centennial for the Meyer-Overton rule: anesthetics and receptors]. Ueda I; Matsuki H Masui; 2000 Feb; 49(2):114-20. PubMed ID: 10707513 [TBL] [Abstract][Full Text] [Related]
11. Anesthetic and convulsant properties of aromatic compounds and cycloalkanes: implications for mechanisms of narcosis. Fang Z; Sonner J; Laster MJ; Ionescu P; Kandel L; Koblin DD; Eger EI; Halsey MJ Anesth Analg; 1996 Nov; 83(5):1097-104. PubMed ID: 8895293 [TBL] [Abstract][Full Text] [Related]
12. A conformational model for the action of general anesthetics at the membrane level. II. Experimental observations on the effects of anesthetics on lipid fluidity and lipid protein interactions. Lenaz G; Mazzanti L; Curatola G; Bertoli E; Bigi A; Zolese G Ital J Biochem; 1978; 27(6):401-30. PubMed ID: 755801 [TBL] [Abstract][Full Text] [Related]
13. Computational studies on the interactions of inhalational anesthetics with proteins. Vemparala S; Domene C; Klein ML Acc Chem Res; 2010 Jan; 43(1):103-10. PubMed ID: 19788306 [TBL] [Abstract][Full Text] [Related]
14. Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism. Abraham MH; Acree WE; Mintz C; Payne S J Pharm Sci; 2008 Jun; 97(6):2373-84. PubMed ID: 17847069 [TBL] [Abstract][Full Text] [Related]
15. The effects of temperature and pressure on the thermodynamic activity of anesthetics. Kaminoh Y; Kamaya H; Tashiro C; Ueda I Toxicol Lett; 1998 Nov; 100-101():353-7. PubMed ID: 10049164 [TBL] [Abstract][Full Text] [Related]
16. A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Trudell JR Anesthesiology; 1977 Jan; 46(1):5-10. PubMed ID: 12686 [TBL] [Abstract][Full Text] [Related]
17. Breaking the Meyer-Overton rule: predicted effects of varying stiffness and interfacial activity on the intrinsic potency of anesthetics. Cantor RS Biophys J; 2001 May; 80(5):2284-97. PubMed ID: 11325730 [TBL] [Abstract][Full Text] [Related]
18. Drosophila melanogaster as a model for study of general anesthesia: the quantitative response to clinical anesthetics and alkanes. Allada R; Nash HA Anesth Analg; 1993 Jul; 77(1):19-26. PubMed ID: 8317731 [TBL] [Abstract][Full Text] [Related]