BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18836233)

  • 41. Identification of G2/M targets for the MAP kinase pathway by functional proteomics.
    Roberts EC; Hammond K; Traish AM; Resing KA; Ahn NG
    Proteomics; 2006 Aug; 6(16):4541-53. PubMed ID: 16858730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Imaging mass spectrometry-based molecular histology differentiates microscopically identical and heterogeneous tumors.
    Jones EA; Schmitz N; Waaijer CJ; Frese CK; van Remoortere A; van Zeijl RJ; Heck AJ; Hogendoorn PC; Deelder AM; Altelaar AF; Bovée JV; McDonnell LA
    J Proteome Res; 2013 Apr; 12(4):1847-55. PubMed ID: 23480610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Unraveling amyloid toxicity pathway in NIH3T3 cells by a combined proteomic and 1 H-NMR metabonomic approach.
    Vilasi A; Vilasi S; Romano R; Acernese F; Barone F; Balestrieri ML; Maritato R; Irace G; Sirangelo I
    J Cell Physiol; 2013 Jun; 228(6):1359-67. PubMed ID: 23192898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New cell lines with chondrocytic phenotypes from human chondrosarcoma.
    Kudawara I; Araki N; Myoui A; Kato Y; Uchida A; Yoshikawa H
    Virchows Arch; 2004 Jun; 444(6):577-86. PubMed ID: 15118855
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteomic analysis of post-translational modifications in conditioned Hermissenda.
    Crow T; Xue-Bian JJ
    Neuroscience; 2010 Feb; 165(4):1182-90. PubMed ID: 19961907
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An analysis of the phosphoproteome of immune cell lines exposed to the immunomodulatory mycotoxin deoxynivalenol.
    Nogueira da Costa A; Keen JN; Wild CP; Findlay JB
    Biochim Biophys Acta; 2011 Jul; 1814(7):850-7. PubMed ID: 21513824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphoproteomics of human platelets: A quest for novel activation pathways.
    Zahedi RP; Begonja AJ; Gambaryan S; Sickmann A
    Biochim Biophys Acta; 2006 Dec; 1764(12):1963-76. PubMed ID: 17049321
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins.
    Reiter W; Anrather D; Dohnal I; Pichler P; Veis J; Grøtli M; Posas F; Ammerer G
    Proteomics; 2012 Oct; 12(19-20):3030-43. PubMed ID: 22890988
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantification of gel-separated proteins and their phosphorylation sites by LC-MS using unlabeled internal standards: analysis of phosphoprotein dynamics in a B cell lymphoma cell line.
    Cutillas PR; Geering B; Waterfield MD; Vanhaesebroeck B
    Mol Cell Proteomics; 2005 Aug; 4(8):1038-51. PubMed ID: 15879432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of long-term low oxygen tension in human chondrosarcoma cells.
    Piltti J; Bygdell J; Qu C; Lammi MJ
    J Cell Biochem; 2018 Feb; 119(2):2320-2332. PubMed ID: 28865129
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphoproteins and the dawn of functional phenotyping.
    Bodo J; Hsi ED
    Pathobiology; 2011; 78(2):115-21. PubMed ID: 21677474
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emerging applications for phospho-proteomics in cancer molecular therapeutics.
    Moran MF; Tong J; Taylor P; Ewing RM
    Biochim Biophys Acta; 2006 Dec; 1766(2):230-41. PubMed ID: 16889898
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phosphoprotein Detection by High-Throughput Flow Cytometry.
    Landskron J; Taskén K
    Methods Mol Biol; 2016; 1355():275-90. PubMed ID: 26584933
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mechanical strain induced phospho-proteomic signaling in uterine smooth muscle cells.
    Copley Salem C; Ulrich C; Quilici D; Schlauch K; Buxton ILO; Burkin H
    J Biomech; 2018 May; 73():99-107. PubMed ID: 29661501
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative Phosphoproteomics Reveals Cell Alignment and Mitochondrial Length Change under Cyclic Stretching in Lung Cells.
    Wang WH; Hsu CL; Huang HC; Juan HF
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32517296
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The need for phosphoproteomic approaches in psychiatric research.
    Martins-de-Souza D; Guest PC; Vanattou-Saifoudine N; Wesseling H; Rahmoune H; Bahn S
    J Psychiatr Res; 2011 Oct; 45(10):1404-6. PubMed ID: 21616503
    [No Abstract]   [Full Text] [Related]  

  • 57. Analysis of IL6-protein complexes in chondrosarcoma.
    Galoian K; Luo S; Patel P
    Biomed Rep; 2018 Jan; 8(1):91-98. PubMed ID: 29399342
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Introduction to special issue on phosphoproteomics.
    Foster LJ
    Semin Cell Dev Biol; 2012 Oct; 23(8):835. PubMed ID: 22963926
    [No Abstract]   [Full Text] [Related]  

  • 59. Chondrosarcoma with Target-Like Chondrocytes: Update on Molecular Profiling and Specific Morphological Features.
    Povýšil C; Hojný J; Kaňa M
    Folia Biol (Praha); 2022; 68(5-6):112-124. PubMed ID: 37256555
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New Insights into Cartilage Tissue Engineering: Improvement of Tissue-Scaffold Integration to Enhance Cartilage Regeneration.
    Jelodari S; Ebrahimi Sadrabadi A; Zarei F; Jahangir S; Azami M; Sheykhhasan M; Hosseini S
    Biomed Res Int; 2022; 2022():7638245. PubMed ID: 35118158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.