BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 18836249)

  • 1. Composite scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Biorheology; 2008; 45(3-4):501-12. PubMed ID: 18836249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage.
    Moutos FT; Freed LE; Guilak F
    Nat Mater; 2007 Feb; 6(2):162-7. PubMed ID: 17237789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A composite scaffold of MSC affinity peptide-modified demineralized bone matrix particles and chitosan hydrogel for cartilage regeneration.
    Meng Q; Man Z; Dai L; Huang H; Zhang X; Hu X; Shao Z; Zhu J; Zhang J; Fu X; Duan X; Ao Y
    Sci Rep; 2015 Dec; 5():17802. PubMed ID: 26632447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.
    Smeriglio P; Lai JH; Yang F; Bhutani N
    J Vis Exp; 2015 Oct; (104):. PubMed ID: 26484414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame.
    Song K; Li L; Li W; Zhu Y; Jiao Z; Lim M; Fang M; Shi F; Wang L; Liu T
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():384-92. PubMed ID: 26117769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering articular cartilage with spatially-varying matrix composition and mechanical properties from a single stem cell population using a multi-layered hydrogel.
    Nguyen LH; Kudva AK; Saxena NS; Roy K
    Biomaterials; 2011 Oct; 32(29):6946-52. PubMed ID: 21723599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteochondral tissue engineering: scaffolds, stem cells and applications.
    Nooeaid P; Salih V; Beier JP; Boccaccini AR
    J Cell Mol Med; 2012 Oct; 16(10):2247-70. PubMed ID: 22452848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
    Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF
    Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask.
    Song K; Li W; Wang H; Zhang Y; Li L; Wang Y; Wang H; Wang L; Liu T
    Biomed Mater; 2016 Oct; 11(6):065002. PubMed ID: 27767021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.
    Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds.
    Schek RM; Taboas JM; Segvich SJ; Hollister SJ; Krebsbach PH
    Tissue Eng; 2004; 10(9-10):1376-85. PubMed ID: 15588398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cartilage Tissue Regeneration: The Roles of Cells, Stimulating Factors and Scaffolds.
    Huang K; Li Q; Li Y; Yao Z; Luo D; Rao P; Xiao J
    Curr Stem Cell Res Ther; 2018; 13(7):547-567. PubMed ID: 28595567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue Engineering: An Alternative to Repair Cartilage.
    Campos Y; Almirall A; Fuentes G; Bloem HL; Kaijzel EL; Cruz LJ
    Tissue Eng Part B Rev; 2019 Aug; 25(4):357-373. PubMed ID: 30913997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Use of Scaffolds in Cartilage Regeneration.
    Kalkan R; Nwekwo CW; Adali T
    Crit Rev Eukaryot Gene Expr; 2018; 28(4):343-348. PubMed ID: 30311583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.
    Manoukian OS; Matta R; Letendre J; Collins P; Mazzocca AD; Kumbar SG
    Methods Mol Biol; 2017; 1570():261-278. PubMed ID: 28238143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels.
    Kim JE; Kim SH; Jung Y
    J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical projection tomography can be used to investigate spatial distribution of chondrocytes in three-dimensional biomaterial scaffolds for cartilage tissue engineering.
    Järvinen E; Muhonen V; Haaparanta AM; Kellomäki M; Kiviranta I
    Biomed Mater Eng; 2014; 24(3):1549-53. PubMed ID: 24840193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.