These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 18836298)

  • 1. Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor.
    Cruz-Martín A; Mercado JL; Rojas LV; McNamee MG; Lasalde-Dominicci JA
    J Membr Biol; 2001 Sep; 183(1):61-70. PubMed ID: 11547353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An allosteric link connecting the lipid-protein interface to the gating of the nicotinic acetylcholine receptor.
    Domville JA; Baenziger JE
    Sci Rep; 2018 Mar; 8(1):3898. PubMed ID: 29497086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinic acetylcholine receptor-lipid interactions: Mechanistic insight and biological function.
    Baenziger JE; Hénault CM; Therien JP; Sun J
    Biochim Biophys Acta; 2015 Sep; 1848(9):1806-17. PubMed ID: 25791350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function meet at the nicotinic acetylcholine receptor-lipid interface.
    Barrantes FJ
    Pharmacol Res; 2023 Apr; 190():106729. PubMed ID: 36931540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromaticity at the water-hydrocarbon core interface of the membrane: consequences on the nicotinic acetylcholine receptor.
    Lizardi-Ortiz JE; Hyzinski-García MC; Fernández-Gerena JL; Osorio-Martínez KM; Velázquez-Rivera E; Valle-Avilés FL; Lasalde-Dominicci JA
    Channels (Austin); 2008; 2(3):191-201. PubMed ID: 18836298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The functional role of the αM4 transmembrane helix in the muscle nicotinic acetylcholine receptor probed through mutagenesis and coevolutionary analyses.
    Thompson MJ; Domville JA; Baenziger JE
    J Biol Chem; 2020 Aug; 295(32):11056-11067. PubMed ID: 32527728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophan substitutions at the lipid-exposed transmembrane segment M4 of Torpedo californica acetylcholine receptor govern channel gating.
    Lasalde JA; Tamamizu S; Butler DH; Vibat CR; Hung B; McNamee MG
    Biochemistry; 1996 Nov; 35(45):14139-48. PubMed ID: 8916899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying key amino acid residues that affect α-conotoxin AuIB inhibition of α3β4 nicotinic acetylcholine receptors.
    Grishin AA; Cuny H; Hung A; Clark RJ; Brust A; Akondi K; Alewood PF; Craik DJ; Adams DJ
    J Biol Chem; 2013 Nov; 288(48):34428-42. PubMed ID: 24100032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor.
    Tamamizu S; Guzmán GR; Santiago J; Rojas LV; McNamee MG; Lasalde-Dominicci JA
    Biochemistry; 2000 Apr; 39(16):4666-73. PubMed ID: 10769122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles for N-terminal extracellular domains of nicotinic acetylcholine receptor (nAChR) β3 subunits in enhanced functional expression of mouse α6β2β3- and α6β4β3-nAChRs.
    Dash B; Li MD; Lukas RJ
    J Biol Chem; 2014 Oct; 289(41):28338-51. PubMed ID: 25028511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the extracellular domain of nAChR alpha1 bound to alpha-bungarotoxin at 1.94 A resolution.
    Dellisanti CD; Yao Y; Stroud JC; Wang ZZ; Chen L
    Nat Neurosci; 2007 Aug; 10(8):953-62. PubMed ID: 17643119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic contributions to indole-lipid interactions.
    Gaede HC; Yau WM; Gawrisch K
    J Phys Chem B; 2005 Jul; 109(26):13014-23. PubMed ID: 16852615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow-channel mutation in acetylcholine receptor alphaM4 domain and its efficient knockdown.
    Shen XM; Deymeer F; Sine SM; Engel AG
    Ann Neurol; 2006 Jul; 60(1):128-36. PubMed ID: 16685696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of aromatic localization in the gating process of a potassium channel.
    Domene C; Vemparala S; Klein ML; Vénien-Bryan C; Doyle DA
    Biophys J; 2006 Jan; 90(1):L01-3. PubMed ID: 16169989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial tryptophan residues: a role for the cation-pi effect?
    Petersen FN; Jensen MØ; Nielsen CH
    Biophys J; 2005 Dec; 89(6):3985-96. PubMed ID: 16150973
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.