These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18836435)

  • 1. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs.
    Yoon J; Baca AJ; Park SI; Elvikis P; Geddes JB; Li L; Kim RH; Xiao J; Wang S; Kim TH; Motala MJ; Ahn BY; Duoss EB; Lewis JA; Nuzzo RG; Ferreira PM; Huang Y; Rockett A; Rogers JA
    Nat Mater; 2008 Nov; 7(11):907-15. PubMed ID: 18836435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.
    Lee SM; Biswas R; Li W; Kang D; Chan L; Yoon J
    ACS Nano; 2014 Oct; 8(10):10507-16. PubMed ID: 25272244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular bulk heterojunctions: an emerging approach to organic solar cells.
    Roncali J
    Acc Chem Res; 2009 Nov; 42(11):1719-30. PubMed ID: 19580313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.
    Tian B; Zheng X; Kempa TJ; Fang Y; Yu N; Yu G; Huang J; Lieber CM
    Nature; 2007 Oct; 449(7164):885-9. PubMed ID: 17943126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.
    Lee SM; Dhar P; Chen H; Montenegro A; Liaw L; Kang D; Gai B; Benderskii AV; Yoon J
    ACS Nano; 2017 Apr; 11(4):4077-4085. PubMed ID: 28402101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stretchable and foldable silicon integrated circuits.
    Kim DH; Ahn JH; Choi WM; Kim HS; Kim TH; Song J; Huang YY; Liu Z; Lu C; Rogers JA
    Science; 2008 Apr; 320(5875):507-11. PubMed ID: 18369106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of ultrathin silicon solar microcells with nanostructures of relief formed by soft imprint lithography for broad band absorption enhancement.
    Shir D; Yoon J; Chanda D; Ryu JH; Rogers JA
    Nano Lett; 2010 Aug; 10(8):3041-6. PubMed ID: 20583751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of enhanced optical absorption for ultrathin silicon solar microcells with an integrated nanostructured backside reflector.
    Corcoran CJ; Kang S; Li L; Guo X; Chanda D; Nuzzo RG
    ACS Appl Mater Interfaces; 2013 May; 5(10):4239-46. PubMed ID: 23586736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horizontal Silicon Nanowires with Radial p-n Junctions: A Platform for Unconventional Solar Cells.
    Zhang X; Pinion CW; Christesen JD; Flynn CJ; Celano TA; Cahoon JF
    J Phys Chem Lett; 2013 Jun; 4(12):2002-9. PubMed ID: 26283243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates.
    Cao Q; Kim HS; Pimparkar N; Kulkarni JP; Wang C; Shim M; Roy K; Alam MA; Rogers JA
    Nature; 2008 Jul; 454(7203):495-500. PubMed ID: 18650920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.
    Lee SM; Kwong A; Jung D; Faucher J; Biswas R; Shen L; Kang D; Lee ML; Yoon J
    ACS Nano; 2015 Oct; 9(10):10356-65. PubMed ID: 26376087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "Plastic" solar cells: self-assembly of bulk heterojunction nanomaterials by spontaneous phase separation.
    Peet J; Heeger AJ; Bazan GC
    Acc Chem Res; 2009 Nov; 42(11):1700-8. PubMed ID: 19569710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays.
    Park SI; Xiong Y; Kim RH; Elvikis P; Meitl M; Kim DH; Wu J; Yoon J; Yu CJ; Liu Z; Huang Y; Hwang KC; Ferreira P; Li X; Choquette K; Rogers JA
    Science; 2009 Aug; 325(5943):977-81. PubMed ID: 19696346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Black silicon solar thin-film microcells integrating top nanocone structures for broadband and omnidirectional light-trapping.
    Xu Z; Yao Y; Brueckner EP; Li L; Jiang J; Nuzzo RG; Liu GL
    Nanotechnology; 2014 Aug; 25(30):305301. PubMed ID: 25006119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflection-type single long-pulse solar simulator for high-efficiency crystalline silicon photovoltaic modules.
    Hu B; Li B; Zhao R; Yang T
    Rev Sci Instrum; 2011 Jun; 82(6):065104. PubMed ID: 21721727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High saturation solar light beam induced current scanning of solar cells.
    Vorster FJ; van Dyk EE
    Rev Sci Instrum; 2007 Jan; 78(1):013904. PubMed ID: 17503930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.