These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 18837468)
1. Assessment of dietary fiber fermentation: effect of Lactobacillus reuteri and reproducibility of short-chain fatty acid concentrations. Stewart ML; Savarino V; Slavin JL Mol Nutr Food Res; 2009 May; 53 Suppl 1():S114-20. PubMed ID: 18837468 [TBL] [Abstract][Full Text] [Related]
2. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model. Noack J; Timm D; Hospattankar A; Slavin J Nutrients; 2013 May; 5(5):1500-10. PubMed ID: 23645025 [TBL] [Abstract][Full Text] [Related]
3. Wheat dextrin, psyllium, and inulin produce distinct fermentation patterns, gas volumes, and short-chain fatty acid profiles in vitro. Timm DA; Stewart ML; Hospattankar A; Slavin JL J Med Food; 2010 Aug; 13(4):961-6. PubMed ID: 20482283 [TBL] [Abstract][Full Text] [Related]
4. In vitro fermentation of NUTRIOSE(®) FB06, a wheat dextrin soluble fibre, in a continuous culture human colonic model system. Hobden MR; Martin-Morales A; Guérin-Deremaux L; Wils D; Costabile A; Walton GE; Rowland I; Kennedy OB; Gibson GR PLoS One; 2013; 8(10):e77128. PubMed ID: 24204753 [TBL] [Abstract][Full Text] [Related]
5. In vitro batch fecal fermentation comparison of gas and short-chain fatty acid production using "slowly fermentable" dietary fibers. Kaur A; Rose DJ; Rumpagaporn P; Patterson JA; Hamaker BR J Food Sci; 2011; 76(5):H137-42. PubMed ID: 22417432 [TBL] [Abstract][Full Text] [Related]
6. Comparison of different fibers for in vitro production of short chain fatty acids by intestinal microflora. Pylkas AM; Juneja LR; Slavin JL J Med Food; 2005; 8(1):113-6. PubMed ID: 15857221 [TBL] [Abstract][Full Text] [Related]
7. Prebiotic Effects and Fermentation Kinetics of Wheat Dextrin and Partially Hydrolyzed Guar Gum in an Carlson J; Hospattankar A; Deng P; Swanson K; Slavin J Foods; 2015 Aug; 4(3):349-358. PubMed ID: 28231210 [TBL] [Abstract][Full Text] [Related]
8. Quantification of in Vivo Colonic Short Chain Fatty Acid Production from Inulin. Boets E; Deroover L; Houben E; Vermeulen K; Gomand SV; Delcour JA; Verbeke K Nutrients; 2015 Oct; 7(11):8916-29. PubMed ID: 26516911 [TBL] [Abstract][Full Text] [Related]
9. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals. Carlson J; Esparza J; Swan J; Taussig D; Combs J; Slavin J Food Funct; 2016 Apr; 7(4):1833-8. PubMed ID: 26862979 [TBL] [Abstract][Full Text] [Related]
10. The effect of pectin, corn and wheat starch, inulin and pH on in vitro production of methane, short chain fatty acids and on the microbial community composition in rumen fluid. Poulsen M; Jensen BB; Engberg RM Anaerobe; 2012 Feb; 18(1):83-90. PubMed ID: 22193552 [TBL] [Abstract][Full Text] [Related]
11. Wheat Bran Does Not Affect Postprandial Plasma Short-Chain Fatty Acids from Deroover L; Verspreet J; Luypaerts A; Vandermeulen G; Courtin CM; Verbeke K Nutrients; 2017 Jan; 9(1):. PubMed ID: 28117694 [TBL] [Abstract][Full Text] [Related]
12. Fermentation Supernatant of Elderly Feces with Inulin and Partially Hydrolyzed Guar Gum Maintains the Barrier of Inflammation-Induced Caco-2/HT29-MTX-E12 Co-Cultured Cells. Kono G; Yoshida K; Kokubo E; Ikeda M; Matsubara T; Koyama T; Iwamoto H; Miyaji K J Agric Food Chem; 2023 Jan; 71(3):1510-1517. PubMed ID: 36622307 [TBL] [Abstract][Full Text] [Related]
13. Estimation and interpretation of fermentation in the gut: coupling results from a 24 h batch in vitro system with fecal measurements from a human intervention feeding study using fructo-oligosaccharides, inulin, gum acacia, and pea fiber. Koecher KJ; Noack JA; Timm DA; Klosterbuer AS; Thomas W; Slavin JL J Agric Food Chem; 2014 Feb; 62(6):1332-7. PubMed ID: 24446899 [TBL] [Abstract][Full Text] [Related]
14. The impact of long-term dietary pattern of fecal donor on in vitro fecal fermentation properties of inulin. Yang J; Rose DJ Food Funct; 2016 Apr; 7(4):1805-13. PubMed ID: 26583778 [TBL] [Abstract][Full Text] [Related]
15. In vitro fermentation of swine ileal digesta containing oat bran dietary fiber by rat cecal inocula adapted to the test fiber increases propionate production but fermentation of wheat bran ileal digesta does not produce more butyrate. Monsma DJ; Thorsen PT; Vollendorf NW; Crenshaw TD; Marlett JA J Nutr; 2000 Mar; 130(3):585-93. PubMed ID: 10702589 [TBL] [Abstract][Full Text] [Related]
16. Potential water-holding capacity and short-chain fatty acid production from purified fiber sources in a fecal incubation system. McBurney MI Nutrition; 1991; 7(6):421-4. PubMed ID: 1666322 [TBL] [Abstract][Full Text] [Related]
17. Comparison of konjac glucomannan digestibility and fermentability with other dietary fibers in vitro. Chiu YT; Stewart M J Med Food; 2012 Feb; 15(2):120-5. PubMed ID: 22149628 [TBL] [Abstract][Full Text] [Related]
18. Fructooligosaccharides exhibit more rapid fermentation than long-chain inulin in an in vitro fermentation system. Stewart ML; Timm DA; Slavin JL Nutr Res; 2008 May; 28(5):329-34. PubMed ID: 19083428 [TBL] [Abstract][Full Text] [Related]
19. In vitro fermentation of various fiber and starch sources by pig fecal inocula. Wang JF; Zhu YH; Li DF; Wang Z; Jensen BB J Anim Sci; 2004 Sep; 82(9):2615-22. PubMed ID: 15446478 [TBL] [Abstract][Full Text] [Related]
20. Combined resistant dextrin and low-dose Mg oxide administration increases short-chain fatty acid and lactic acid production by gut microbiota. Sasaki H; Hayashi K; Imamura M; Hirota Y; Hosoki H; Nitta L; Furutani A; Shibata S J Nutr Biochem; 2023 Oct; 120():109420. PubMed ID: 37516314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]