BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18837491)

  • 1. Geometry optimizations and vibrational spectra of large molecules from a generalized energy-based fragmentation approach.
    Hua W; Fang T; Li W; Yu JG; Li S
    J Phys Chem A; 2008 Oct; 112(43):10864-72. PubMed ID: 18837491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules.
    Li W; Li S; Jiang Y
    J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An efficient implementation of the generalized energy-based fragmentation approach for general large molecules.
    Hua S; Hua W; Li S
    J Phys Chem A; 2010 Aug; 114(31):8126-34. PubMed ID: 20684586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-lying structures and stabilities of large water clusters: investigation based on the combination of the AMOEBA potential and generalized energy-based fragmentation approach.
    Yang Z; Hua S; Hua W; Li S
    J Phys Chem A; 2010 Sep; 114(34):9253-61. PubMed ID: 20669931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized energy-based fragmentation approach and its applications to macromolecules and molecular aggregates.
    Li S; Li W; Ma J
    Acc Chem Res; 2014 Sep; 47(9):2712-20. PubMed ID: 24873495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate prediction of the structure and vibrational spectra of ionic liquid clusters with the generalized energy-based fragmentation approach: critical role of ion-pair-based fragmentation.
    Li Y; Yuan D; Wang Q; Li W; Li S
    Phys Chem Chem Phys; 2018 May; 20(19):13547-13557. PubMed ID: 29726875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules.
    Li S; Li W; Fang T
    J Am Chem Soc; 2005 May; 127(19):7215-26. PubMed ID: 15884963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrational Spectra of Molecular Crystals with the Generalized Energy-Based Fragmentation Approach.
    Fang T; Jia J; Li S
    J Phys Chem A; 2016 May; 120(17):2700-11. PubMed ID: 27076120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized energy-based fragmentation approach for calculations of solvation energies of large systems.
    Liao K; Wang S; Li W; Li S
    Phys Chem Chem Phys; 2021 Sep; 23(35):19394-19401. PubMed ID: 34490874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting the structures and vibrational spectra of molecular crystals containing large molecules with the generalized energy-based fragmentation approach.
    Hong B; Fang T; Li W; Li S
    J Chem Phys; 2023 Jan; 158(4):044117. PubMed ID: 36725497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach.
    Li W; Dong H; Ma J; Li S
    Acc Chem Res; 2021 Jan; 54(1):169-181. PubMed ID: 33350806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid diatomics-in-molecules-based quantum mechanical/molecular mechanical approach applied to the modeling of structures and spectra of mixed molecular clusters Arn(HCl)m and Arn(HF)m.
    Bochenkova AV; Suhm MA; Granovsky AA; Nemukhin AV
    J Chem Phys; 2004 Feb; 120(8):3732-43. PubMed ID: 15268536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fragment energy assembler method for Hartree-Fock calculations of large molecules.
    Li W; Fang T; Li S
    J Chem Phys; 2006 Apr; 124(15):154102. PubMed ID: 16674213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DCMB that combines divide-and-conquer and mixed-basis set methods for accurate geometry optimizations, total energies, and vibrational frequencies of large molecules.
    Wu A; Xu X
    J Comput Chem; 2012 Jun; 33(16):1421-32. PubMed ID: 22496038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational center-ligand couplings in transition metal complexes.
    Neugebauer J; Reiher M
    J Comput Chem; 2004 Mar; 25(4):587-97. PubMed ID: 14735576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions.
    Li W
    J Chem Phys; 2013 Jan; 138(1):014106. PubMed ID: 23298027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO).
    Fedorov DG; Olson RM; Kitaura K; Gordon MS; Koseki S
    J Comput Chem; 2004 Apr; 25(6):872-80. PubMed ID: 15011259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Energy-Based Fragmentation Approach for the Electronic Emission Spectra of Large Systems.
    Du J; Liao K; Ma J; Li W; Li S
    J Chem Theory Comput; 2022 Dec; 18(12):7630-7638. PubMed ID: 36399522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and properties of large supramolecular coordination complexes predicted with the generalized energy-based fragmentation method.
    Yuan D; Li Y; Li W; Li S
    Phys Chem Chem Phys; 2018 Nov; 20(45):28894-28902. PubMed ID: 30421758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the role of intra- and intermolecular interactions in the formation of single- and double-helical structures of aromatic oligoamides: a computational study.
    Dong H; Hua S; Li S
    J Phys Chem A; 2009 Feb; 113(7):1335-42. PubMed ID: 19170580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.