These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 18837530)
1. New investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfaces. Bormashenko E; Pogreb R; Bormashenko Y; Musin A; Stein T Langmuir; 2008 Nov; 24(21):12119-22. PubMed ID: 18837530 [TBL] [Abstract][Full Text] [Related]
2. On the mechanism of floating and sliding of liquid marbles. Bormashenko E; Bormashenko Y; Musin A; Barkay Z Chemphyschem; 2009 Mar; 10(4):654-6. PubMed ID: 19177484 [TBL] [Abstract][Full Text] [Related]
3. Evaporation rate of graphite liquid marbles: comparison with water droplets. Dandan M; Erbil HY Langmuir; 2009 Jul; 25(14):8362-7. PubMed ID: 19499944 [TBL] [Abstract][Full Text] [Related]
4. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Rida A; Gijs MA Anal Chem; 2004 Nov; 76(21):6239-46. PubMed ID: 15516114 [TBL] [Abstract][Full Text] [Related]
5. Application of superhydrophobic surface with high adhesive force in no lost transport of superparamagnetic microdroplet. Hong X; Gao X; Jiang L J Am Chem Soc; 2007 Feb; 129(6):1478-9. PubMed ID: 17243677 [No Abstract] [Full Text] [Related]
6. On the nature of the friction between nonstick droplets and solid substrates. Bormashenko E; Bormashenko Y; Oleg G Langmuir; 2010 Aug; 26(15):12479-82. PubMed ID: 20593794 [TBL] [Abstract][Full Text] [Related]
7. Water drop friction on superhydrophobic surfaces. Olin P; Lindström SB; Pettersson T; Wågberg L Langmuir; 2013 Jul; 29(29):9079-89. PubMed ID: 23721176 [TBL] [Abstract][Full Text] [Related]
8. Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces. Bormashenko E; Stein T; Whyman G; Bormashenko Y; Pogreb R Langmuir; 2006 Nov; 22(24):9982-5. PubMed ID: 17106989 [TBL] [Abstract][Full Text] [Related]
9. Droplet motion on designed microtextured superhydrophobic surfaces with tunable wettability. Fang G; Li W; Wang X; Qiao G Langmuir; 2008 Oct; 24(20):11651-60. PubMed ID: 18788770 [TBL] [Abstract][Full Text] [Related]
10. Magnetism and microfluidics. Pamme N Lab Chip; 2006 Jan; 6(1):24-38. PubMed ID: 16372066 [TBL] [Abstract][Full Text] [Related]
11. Dynamic measurement of the force required to move a liquid drop on a solid surface. Pilat DW; Papadopoulos P; Schäffel D; Vollmer D; Berger R; Butt HJ Langmuir; 2012 Dec; 28(49):16812-20. PubMed ID: 23181385 [TBL] [Abstract][Full Text] [Related]
12. Detecting the magnetic response of iron oxide capped organosilane nanostructures using magnetic sample modulation and atomic force microscopy. Li JR; Lewandowski BR; Xu S; Garno JC Anal Chem; 2009 Jun; 81(12):4792-802. PubMed ID: 19453164 [TBL] [Abstract][Full Text] [Related]
13. Shape, vibrations, and effective surface tension of water marbles. Bormashenko E; Pogreb R; Whyman G; Musin A; Bormashenko Y; Barkay Z Langmuir; 2009 Feb; 25(4):1893-6. PubMed ID: 19152257 [TBL] [Abstract][Full Text] [Related]
14. Superhydrophobicity of biological and technical surfaces under moisture condensation: stability in relation to surface structure. Mockenhaupt B; Ensikat HJ; Spaeth M; Barthlott W Langmuir; 2008 Dec; 24(23):13591-7. PubMed ID: 18959433 [TBL] [Abstract][Full Text] [Related]